Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 31, No. 6 (June 2018) 726-735   

downloaded Downloaded: 0   viewed Viewed: 219

  NUMERICAL ANALYSIS OF FULLY DEVELOPED FLOW AND HEAT TRANSFER IN CHANNELS WITH PERIODICALLY GROOVED PARTS (TECHNICAL NOTE)
 
ali Joodaki
 
( Received: June 02, 2017 – Accepted: January 14, 2018 )
 
 

Abstract    To obtain a higher heat transfer in the low Reynolds number flows, wavy channels are often employed in myriad engineering applications. In this study, the geometry of grooves shapes is parameterized by means of four angles. By changing these parameters new geometries are generated and numerical simulations are carried out for internal fully developed flow and heat transfer. Results are compared with those of rectangular grooved channel. Two different Prandtl numbers, i.e. 0.7 and 5, are investigated while Reynolds number varies from 50 to 300. An element-based finite volume method (EBFVM) is used to discretize the governing equations. Results reveal that that the both heat transfer performance and average Nusselt number of rectangular grooved channel are higher than those of other geometries.

 

Keywords    wavy channel, fully developed flow, grooves shapes, thermal performances

 

چکیده    از کانال‌های موجدار به صورت گسترده در حوزه‌های مختلف مهندسی به منظور دستیابی به انتقال حرارت بیشتر در جریان‌های با عدد رینولدز پایین استفاده می‌شود. در این مطالعه، هندسه شکل زائده‌های دیواره کانال به کمک چهار زاویه مدلسازی شده است. با تغییر این پارامترها هندسه کانال‌های جدیدی تولید شده و از حل عددی به منظور شبیه‌سازی جریان و انتقال حرارت توسعه یافته داخلی استفاده شده است. نتایج با یک کانال با زائده‌ی مستطیل شکل مقایسه شده است. عدد پرانتل 0.7 و 5 انتخاب و عدد رینولدز در محدوده 50 تا 300 فرض شده است. از یک روش حجم محدود مبتنی بر المان برای گسسته‌سازی معادلات حاکم استفاده شده است. مطابق نتایج به دست آمده بازده انتقال حرارتی و همچنین عدد نوسلت متوسط کانال با زائده مستطیل شکل نسبت به بقیه شکل‌ها، بزرگتر می‌باشد.

References     [1] Webb, R.L., "Principals of enhanced heat transfer", New York: John Wiley & Sons Inc,(1994). [2] Nishimura, T., Ohori, Y., Kawamura, Y., "Flow characteristics in a channel with symmetric wavy wall for steady flow" J. Chem. Eng., Jpn. Vol. 17, (1984), 466-471.  [3] Nishimura, T., Murakami, S., Arakawa, S., Kawamura, Y., "Flow observations and mass transfer characteristics in symmetrical wavy walled channels at moderate Reynolds numbers for steady flow" Int. J. Heat Mass Transfer, Vol. 33, (1990), 835-845. [4] Rush, T.A., Newell, T.A., Jacobi, A.M., "An Experimental study of flow and heat transfer in sinusoidal wavy passages", Int. J. Heat Mass Transfer, Vol. 42, (1999), 1541-1553. [5] Wang, G., Vanka, S.P., "Convective heat transfer in periodic wavy passages" Int. J. Heat and Mass Transfer, Vol. 38, (1995), 3219-3230. [6] Volker, S. and Vanka, P., "Fluid flow and heat transfer in serpentine channels at low Reynolds numbers" Air conditioning and refrigeration center (ACRC TR-115), University of Illinois, (1997). [7] Niceno, B. and Nobile, E. "Numerical analysis of fluid flow and heat transfer in periodic wavy channels" International Journal of Heat and Fluid Flow, Vol. 22, (2001),156-167. [8] Metwally, H.M. and Manglik, R.M. "Enhanced heat transfer due to curvature-induced lateral vortices in laminar flows in sinusoidal corrugated-plate channels" International Journal of Heat and Mass Transfer, Vol. 47, (2004), 2283–2292. [9] Zhang, J., Kundu, J., Manglik, R.M., "Effect of fin waviness and spacing on the lateral vortex structure and laminar heat transfer in wavy-plate-fin cores" International Journal of Heat and Mass Transfer, Vol. 47, (2004), 1719–1730. [10] Pashaie, P., Jafari, M., Baseri, H., Farhadi, M., "Nusselt Number Estimation along a Wavy Wall in an Inclined Lid-driven Cavity using Adaptive Neuro-Fuzzy Inference System (ANFIS)" International Journal of Engineering: TRANSACTIONS A: Basics,  Vol. 26, No. 4, (2013), 383-392.  [11] Writz, R.A., Huang, F., Greiner, M., "Correlation of fully developed heat transfer and pressure drop in a symmetrically grooved channel" ASME, Journal of heat transfer, Vol.121, (1999), 236-239. [12] Islamoglu Y, Parmaksizoglu C. "The effect of channel height on the enhanced heat transfer characteristics in a corrugated heat exchanger channel"Applied Thermal Engineering, Vol. 23, (2003), 979–987. [13] Islamoglu Y, Kurt A. "Heat transfer analysis using ANNs with experimental data for air flowing in corrugated channels" International Journal of Heat and Mass Transfer, Vol. 47, (2004), 1361–1365. [14] Islamoglu Y, Parmaksizoglu C. "Numerical investigation of convective heat transfer and pressure drop in a corrugated heat exchanger channel" Applied Thermal Engineering, Vol.24, (2004), 141–147. [15] Naphon, P., "Laminar convective heat transfer and pressure drop in the corrugated channels" International Communications in Heat and Mass Transfer, Vol. 34, (2007), 62–71. [16] Hamza, A., Ali, H., Hanaoka, Y., "Experimental study on laminar flow forced-convection in a channel with upper V-corrugated plate heated by radiation" International Journal of Heat and Mass Transfer, Vol. 45, (2002), 2107–2117. [17] Zimmerer, C., Gschwind, P., Gaiser, G., Kottke, V., "Comparison of heat and mass transfer in different heat exchanger geometries with corrugatedwalls" Experimental Thermal and Fluid Science, Vol. 26, (2002), 269–273. [18] Farhanieh, B. and Sunden, B., "Numerical investigation of periodic laminar  heat transfer and fluid characteristics in parallel plates duct with streamwise-periodic cavities" Int. J. Numer. Meth. Heat Fluid Flow, Vol. 1, (1991), 143-157. [19] Deylami, H.M.,  Amanifard, N., Sanaei, M., Kouhikamali, R., "Numerical Investigation of Heat Transfer and Pressure Drop in a Corrugated Channel" International Journal of Engineering: TRANSACTIONS A: Basics, Vol. 26, No. 7, (2013), 771-780. [20] Geyer, P.E.,  Fletcher, D.F., Haynes, B.S., "Laminar flow and heat transfer in a periodic trapezoidal channel with semi-circular cross-section" International Journal of Heat and Mass Transfer, Vol. 50, (2007), 3471–3480. [21] Ghadder, N.K., Korczak, K.Z., Mikic, B.B., Patera, A.Y., "Numerical investigation of incompressible flow in grooved channels Part 1. Stability and self-sustained oscillations" Journal of Fluid Mechanics, Vol. 163, (1986), 99-127. [22] Sunden, B. and Trollheden, S., "Periodic laminar flow and heat transfer in a corrugated two-dimensional channel" Int. Comm. Heat Mass Transfer, Vol. 16, (1989), 215-225. [23] Pereira, J.C. and Sousa, J.M., "Finite volume calculations of self-sustained oscillations in a grooved channel" Journal of Computational Physics, Vol. 106, (1993), 19-29. [24] Adachi, T. and Uehara, H., "Correlation between heat transfer and pressure drop in channels with periodically grooved parts" International Journal of Heat and Mass Transfer, Vol. 44, (2001), 4333-4343. [25] Fabbri, G., "Heat transfer optimization in corrugated wall channels" International Journal of Heat and Mass Transfer, Vol. 43, (2000), 4299-4310. [26] Nobile, E., Pinto, F. and Rizzetto, G., "Geometrical parameterization and multi-objective shape optimization of convective periodic channels" Numerical Heat Transfer, Part B, Vol. 50, (2006), 425–453. [27] Patankar, S.V., Liu, C.H., Sparrow, E.M., "Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area" ASME, Vol.99, (1977), 180-186. [28] Ramgadia, A.G. and Saha, A.K., "Fully Developed Flow and Heat Transfer Characteristics in a Wavy Passage: Effect of Amplitude of Waviness and Reynolds number" International Journal of Heat and Mass Transfer, Vol.55, (2012), 2494-2509. [29] Shah, R.K. and London, A.L., "Laminar forced convection in ducts" Advances in Heat Transfer, Academic, New York, (1978). [30] Garg, V.K. and Maji, P.K., "Laminar Flow and Heat Transfer in a Periodically Converging-Diverging Channel" International Journal for Numerical Methods in Fluids, Vol.8, (1988), 579-597.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir