Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 31, No. 6 (June 2018) 1239-1247   

downloaded Downloaded: 0   viewed Viewed: 95

  SECOND-ORDER DECENTRALIZED SAFE CONSENSUS PROTOCOL FOR INTER-CONNECTED HETEROGENEOUS VEHICULAR PLATOONS
 
H. Chehardoli and M. Homaienezhad
 
( Received: August 25, 2017 – Accepted: March 09, 2018 )
 
 

Abstract    This paper deals with second-order consensus of inter-connected heterogeneous vehicular platoons by considering collision avoidance and string stability. All previous studies deal with the control design and stability analysis of individual vehicular platoons. Since the traffic flow consists of interaction between heterogeneous platoons, it is necessary to study both the inter-platoon and intra-platoon stability analysis. A second order differential equation is employed to describe the upper level dynamics of each vehicle. Both communication and parasitic delays are investigated in stability analysis. The communication topology of traffic flow is assumed to be unidirectional. By using the feedback information of preceding (leader/following) vehicle’s acceleration, the closed-loop dynamics of traffic flow is decoupled. By introducing new theorems, sufficient conditions on control parameters satisfying inter / intra-platoon asymptotic stability, collision avoidance and string stability are presented. Simulation results are provided to illustrate the effectiveness of the proposed approaches.

 

Keywords    Heterogeneous traffic flow, Unidirectional topology, Heterogeneous platoon, Internal stability, String stability, Collision avoidance.

 

چکیده    : در این مقاله به تحلیل پایداری و کنترل جریان ترافیکی ناهمگن با لحاظ ایمنی و پایداری رشته­ای پرداخته می­شود. تمرکز تحقیقات گذشته بر تحلیل پایداری فقط یک گروه خودرو استوار بوده است. از آنجایی که جریان ترافیکی شامل برهم­کنش گروه­های ناهمگن خودرو است، ضرورت مطالعه رفتار بین گروهی و درون­گروهی خودروها وجود دارد. با توجه به حجم زیاد جریان ترفیکی روش­های موجود در تحلیل سیستم­های چندعاملی، پاسخگوی تحلیل جریان ترافیکی نمی­باشد. لذا در این مقاله روشی نوین با استفاده از اطلاعات شتاب خودرو جلو برای دیکاپل کردن معادله حلقه بسته جریان ترافیکی ارائه می­گردد. ساختار ارتباطی به صورت یکسویه درنظر گرفته می­شود و تاخیر زمانی ارتباطی و عملگری در مدل­سازی و کنترل حرکت بین گروهی و درون گروهی لحاظ می­گردد. مدل دیفرانسیل مرتبه دو برای توصیف دینامیک سطح بالای خودرو درنظر گرفته می­شود و شرایط لازم روی پارامترهای کنترلی که متضمن پایداری رشته­ای و ایمنی در جریان ترافیکی باشند ارائه می­گردد. شبیه­سازی­های متعدد برای نشان داده کیفیت روش­های بیان شده ارائه می­گردند.

References    1.   Faghri, A., and Panchanathan, S., “Intelligent vehicle highway systems (IVHS) issues and recommendations”, International Journal of Engineering Transaction A: Basics, Vol. 8, No. 3, (1995), 121-132. 2.   H. Hao, and P. Barooah, “Traffic signal prediction using elman neural network and parasitic swarm optimization”, International Journal of Engineering Transaction B: Applications, Vol. 29, No. 11, (2016), 1558–1564. 3.   Ghasemi, A., and Rouhi, S., “A safe stable directional vehicular platoon”, Proc. IMechE Part D: Jour. of Autom. Engin, Vol. 229, No. 8, (2015), 1083–1092. 4.   Naus, G.L., Vugts, R., Ploeg, J., Molengraft, J., and Steinbuch, M., “String-stable CACC design and experimental validation: a frequency-domain approach”, IEEE Tran. Vehic. Tech., Vol. 59, No. 9,  (2010), 4268-4277. 5.  Ghasemi, J., and Rasekhi, J., “Traffic flow characteristic of isolated off-rampes in Iranian expressways”, International Journal of Engineering Transaction B: Applications, Vol. 11, No. 3, (1998), 135–146. 6.   Xiao, L., and Gao, F., “Practical string stability of platoon of adaptive cruise control vehicles”, IEEE Tran. Intell. Trans. Sys., Vol. 12, No. 4, (2011), 1184-1194. 7.   Rajmani, R., “Vehicle dynamics and control. Springer, First Ed, (2011). 8.   Swaroop, D., and Hedrick, J. K., “Constant spacing strategies for platooning in automated highway systems”, Trans ASME: J Dyn. Syst. Meas. Control, Vol. 121, No. 3, (1999), 462–470. 9.   Ghasemi, R., Kazemi, R., and Azadi, A., “Stability analysis of bidirectional adaptive cruise control with asymmetric information flow”, Jour. of Mech. Eng. Sci., Vol. 6, No. 6, (2015), 47-58. 10.  Peters, A. A., Middelton, R. H., and O. Mason, “Leader tracking homogeneous platoons with broadcast delays”, Automatica, Vol. 50, No. 7, ( 2014), 64-74. 11.  Jia, D., and Ngoduy, D., “Platoon based cooperative driving model with consideration of realistic inter-vehicle communication”, Transportation Research Part C, Vol. 68, No. 3, (2016), 245-264. 12.  Chehardoli, H., and Homaienezhad, M.R., “Switching decentralized control of a platoon of vehicles with time-varying heterogeneous delay: constant time headway policy”, Proc of IMechE, Part D J Automobile Engineering, Accepted for publication, (2017), 1-13. 13.  Kwon, J. W., and Chwa, D., “Adaptive bidirectional platoon control using a coupled sliding mode control method”, IEEE Trans. on Intell. Transp. Sys., Vol. 15, No. 5, (2014), 2040-2048.‏ 14.  Kianfar, R., Falcone, P. and Fredriksson, J. “A control matching model predictive control approach to string stable vehicle platooning”, Cont. Eng. Prac., Vol. 45, No. 7, (2015), 163–173. 15.  Chehardoli, H., and Homaienezhad, M.R., “Stable control of a heterogeneous platoon of vehicles with switched interaction topology, time-varying communication delay and lag of actuator”, J. Mech. Eng. Sci., Vol. 8, (2017), 1-12. 16.  Zheng, Y, Li, S.E., Wang, J., Cao, D., and Li, K., “Stability and scalability of homogeneous vehicular platoon: study on influence of information flow topologies”, IEEE Trans. Intel. Trans. Syst., Vol. 17, No. 4, (2016), 14-26. 17.  Zhang, L., and Orosz, G., “Motif-based design for connected vehicle systems in presence of heterogeneous connectivity structures and time delays”, IEEE Trans. Intel. Trans. Syst, Vol. 17, No. 1, (2016), 14-26. 18.  Ghasemi, A., Kazemi, R., and Azadi, S., “Exact stability of a platoon of vehicles by considering time delay and lag”, Journal of Mechanical Science and Technology, Vol. 29, No. 2, (2015), 799-805. 19.  Bernardo, M., Salvi, A., Santini, S., and Valente, A.S., “Third-order consensus in vehicles platoon with heterogeneous time-varying delays”, IFAC conference, USA, (2015), 358–363. 20.  Ghasemi, A., Kazemi, R., and Azadi, S., “Stable decentralized control of platoon of vehicles with heterogeneous information feedback”, IEEE Tran. Veh. Tech., Vol. 62, No. 3, (2013), 4299–4308. 21.  Hao, H., Barooah, P., and Mehta, G., “Stability margin scaling laws for distributed formation control as a function of network structure”, IEEE Trans. Aut. Cont., Vol. 56, No. 4, (2011), 923-929. 22.  Eben, S.L., Li, K., and Wang, J., “Economy-oriented vehicle adaptive cruise control with coordinating multiple objectives functions”, Veh. Syst. Dyn., Vol. 51, No. 1, (2013), 1–17. 23.  Chehardoli, H., and Ghasemi, A., “Adaptive robust output tracking control of uncertain nonlinear cascade systems with disturbance and multiple uknown time-varying delays, Asian Journal of Control, (2917), 1-8, doi: 10.1002/asjc.1504. 24.  Chehardoli, H., and Eghtesad, M., “Robust adaptive control of switched nonlinear systems in strict feedback form with unknown time delay”, IMA J. Math. Control. And Inform., Vol. 32, No.6, (2015), 761–779. 25.  Kharitonov, G. K., and Chen, J., “Stability of time-delay Systems. Birkhauser, (2003). 26.  Olgac, N., and Sipahi, R., “An improved procedure in detecting the stability robustness of systems with uncertain delay”, IEEE Trans. Automat. Contrl, Vol. 51, No. 7, (2006), 1164-1165. 27. Thovsen, A., “The Routh-Hurwitz method for stability determination of linear differential-difference systems”, Inter. J. Control, Vol. 33, No. 5, (1981), 991-995. 28.  Seiler, P., Pant, A., and Hedrick, K., “Disturbance propagation in vehicle strings”, IEEE Trans. Autom. Control, Vol. 49, No. 10, (2004), 1835-1841.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir