Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 31, No. 6 (June 2018) 1311-1319   

downloaded Downloaded: 0   viewed Viewed: 116

  TURNING OF TI-6AL-4V ALLOY WITH IRON-RICH BINDER CARBIDE CUTTING TOOLS
 
C. Mahadevaiah and S. Prasad
 
( Received: October 14, 2017 – Accepted: January 15, 2018 )
 
 

Abstract    Despite the fact that Titanium material has been considered as difficult to cut material, its usage has been increasing day by day in all engineering sectors, wherever criticality is encountered. Many studies are going on in view of increasing tool life at high cutting speed to improve productivity. In this study, an attempt has been made to study the tool life and wear behavior of iron-rich binder carbide cutting tools at different cutting speeds for machining of a Ti-6Al-4V alloy. Iron is used along with primary binder cobalt in a hard matrix of a cutting tool. The iron-rich binder carbide tool samples were produced through powder metallurgy route using powder with mean particle size of less than 300 nm. Turning experiments were conducted at different speeds to evaluate the effects of iron-rich binder on tool life. Results of turning experiments show clearly that iron-rich binders tend to increase tool life in comparison to conventional WC-Co composite cutting tools.

 

Keywords    Titanium, Cutting tools, Tungsten carbide, Cobalt, Iron.

 

چکیده    علیرغم اینکه مواد تیتانیوم به عنوان مواد برش سختی درنظر گرفته شده است، استفاده از آن روز به روز در تمام بخش های مهندسی افزایش می یابد، هرچند که بحرانی شدن مواجه می شود. بسیاری از مطالعات در حال افزایش است با توجه به افزایش طول عمر ابزار در سرعت برش بالا برای بهبود بهره وری. در این مطالعه تلاش شده است که به بررسی ابعاد کار و پوشیدن ابزارهای برش کاربید اتصال دهنده با غلظت آهن در سرعت های مختلف برش برای ماشینکاری یک آلیاژ Ti-6Al-4V بپردازیم. آهن همراه با کبالت اولیه باند در ماتریس سخت یک ابزار برش استفاده می شود. نمونه های ابزار کاربید اتصال دهنده با غلظت آهن از طریق روش متالورژی پودر با استفاده از پودر با میانگین ذرات کوچکتر از 300 نانومتر تولید می شود. آزمایش های غربالگری با سرعت های مختلف برای ارزیابی اثرات گیرنده غنی آهن بر روی عمر ابزار صورت گرفت. نتایج آزمایش های چرخشی نشان می دهد که گیرنده های غنی از آهن تمایل به افزایش عمر ابزار نسبت به ابزارهای برش کامپوزیتی WC-Co معمولی دارند.

References    1)     Ezugwu E.O, Wang Z.M., “Titanium alloys and their machinability – a Review”, Journal of Materials Processing Technology, Volume 68, Issue 3, (1997), 193-295.2)    Paulo Davim. J, “Machining of Titanium Alloys”, Materials Forming, Machining, and Tribology, (2014), DOI: 10.1007/978-3-662-43902-9_1,  3)     Ahsan.K.B, Mazid.A.M. Clegg.R.E, Pang.G.K.H, “Study on carbide cutting tool life using various cutting speeds for Ti alloy machining”, Journal of Achievements in Materials and Manufacturing Engineering, (2012), Volume 55, Issue 2, 601-606.  4)     Ezugwu, E.O., Wang, Z.M., and Machado. A.R., Wear of Coated Carbide Tools When Machining Nickel (Inconel-718) and Titanium Base (Ti-6Al-4V) Alloys”.  Tribology Transactions, (2000), Vol.43, issue. 2, 263-268.  5)     Sun S, Brandt M, Dargusch MS, Characteristics of cutting forces and chip formation in machining of titanium alloys. International Journal Machine Tools and Manufacturing, (2009), Volume 49, Issue 7-8, 561–568.   6)    Komanduri R, Some clarifications on the mechanics of chip formation when machining titanium alloys. 1982, Wear 76, 15–34  7)     M. Nouari, H. Makich, Experimental investigation on the effect of the material microstructure on tool wear when machining hard titanium alloys: Ti–6Al–4V and Ti-555. Int. Journal of Refractory Metals and Hard Materials 41, (2013), 259–269.  8)     Friedrich CR, Kulkarni VP, Effect of workpiece spring back on micro-milling forces. Microsystem Technologies 10, (2004), .472–477.  9)     J.P.Davim (ed), “Machining of Titanium alloys”, Materials Forming, Machining and Tribology, (2014), DOI: 10.1007/978-3-662-43902-9_1.  10)   Mozammel Mia & Md Awal Khan & Nikhil Ranjan Dhar, “High-pressure coolant on flank and rake surfaces of tool in turning of Ti-6Al-4V: investigations on surface roughness and tool wear”, International Journal of Advance manufacturing technology, (2016), DOI 10.1007/s00170-016-9512-5  11)  Gille.G, Szesny.B, Dreyer.K, van den Berg.H, Schmidt.J, Gestrich.T, Leitner.G. “Submicron and ultrafine-grained hard metals for microdrills and metal cutting inserts”, International Journal of Refractory Metals & Hard Materials, (2002), Volume 20, issue 1, 3–22.  12)  Zak Fang.Z, Xu Wang, Taegong Ryu, Kyu Sup Hwang, Sohn.H.Y,“Synthesis, Sintering, and mechanical properties of nanocrystalline cemented tungsten carbide – A review”, International Journal of Refractory Metals & Hard Materials 27, (2008) ,288–299, DOI:10.1016/j.ijrmhm.2008.07.01.  13)  H.R.de Macedo. A.G.P. da Silva, D.M.A de Melo,” The spreading of Cobalt, nickel, and Iron on tungsten carbide and the first stage of hard metal cutting”, Material Letters., (2003), Vol.57 (24-25), 3924-32, DOI: 10.1016/S0167-577X(03)00242-8.  14)  Masafumi Kikuchi, “The use of cutting temperature to evaluate the machinability of titanium alloys”, 2009,  770-775, doi:10.1016/j.actbio.2008.08.016.  15)  Li.B, Wang.Y, Li.H, You.H., “Modelling and Numerical  Simulation of cutting stress in end milling of titanium Alloy using carbide coated tool”. International Journal of Engineering Transactions A: Basics, Vol.28, No.7 (2015), 1090-1098.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir