IJE TRANSACTIONS A: Basics Vol. 31, No. 7 (July 2018) 1355-1363    Article in Press

downloaded Downloaded: 0   viewed Viewed: 69

A. Sarlak, H. Saeedmonir and C. Gheyretmand
( Received: December 08, 2017 – Accepted: March 09, 2018 )

Abstract    In this study, through series of shaking table tests and statistical analysis the efficiency of Uniform Tuned Liquid Column Damper (UTLCD) in structures resting on loose soils, considering soil-structure interaction has been investigated. The soil beneath the structure is loose sandy soil. The Laminar Shear Box (LSB) as a soil container was adopted and the scaled form of the prototype structure namely model structure using scaling laws was built. Applying selected earthquake record the top story displacement of the soil-structure model was obtained. In the rest of the tests, the soil-structure model was equipped with UTLCD and tested. 3 different in sizes of UTLCDs, each with different Blocking ratio and Frequencies was used. To implement tests, completely randomized factorial design, with factors of Blocking ratio, Frequency and Type (type of the UTLCD) was adopted. Through statistical analysis of the experimental tests was demonstrated that the mentioned factors are effective in response of the structure. Using Response Surface Methodology (RSM), the optimum values of the factors to minimize the top story displacement has been found. In this study it was demonstrated that, due to low reduction in structural responses (in average 12 percent), the optimum UTLCD is not efficient enough in controlling structures resting on loose soils.


Keywords    UTLCD, Statistical Analysis, Soil-Structure Interaction, Shaking table tests, Laminar Shear Box,


چکیده    در این پژوهش با استفاده از آزمایشات میز لرزه و بهره­ گیری از تحلیل آماری، کارایی میراگر مایعی تنظیم شونده با مقطع یکنواخت در سازه­هایی که بر روی خاک سست قرار دارند، با منظور کردن اثر اندر کنش خاک و سازه ،مورد بررسی قرار گرفته است. خاک بستر سازه خاک ماسه­ای شل می­باشد. از جعبه برشی لایه­ای به عنوان مخزن جهت نگه داری خاک استفاده شد. مدل مقیاس شده سازه واقعی بر اساس قوانین حاکم بر مقیاس بندی ساخته شد. از طریق آزمایش میز لرزه سازه مدل آزمایشگاهی تحت یک رکورد زلزله منتخب قرار گرفت و جابه­جایی نوک سازه اندازه­ گیری شد. در مابقی آزمایشات، سازه مدل آزمایشگاهی که مجهز به میراگر مد نظر بود، مجددا تحت همان بارگذاری قرار گرفت. از سه اندازه متفاوت از میراگر مدنظر که هریک قطر روزنه وفرکانس تنظیمی متفاوت دارند، استفاده شد. به منظور انجام آزمایشات یک طرح فاکتوریل کاملا تصادفی با فاکتورهای قطر روزنه، فرکانس و اندازه میراگراستفاده شد. نتایج تحلیل های آماری موید تاثیرگذاربودن این فاکتورها در پاسخ­های سازه می­باشند. از روش رویه­های پاسخ به منظور پیدا کردن مقادیر بهینه فاکتورهای تاثیرگذارکه منجر به کمینه شدن جابه­جایی نوک سازه می­شود استفاده شد. در این تحقیق نشان داده شد با توجه به اینکه میراگر مدنظربه میزان کمی (به طور متوسط 12 درصد) باعث کاهش پاسخ­های سازه می­گردد درنتیجه به عنوان یک ابزار کنترل کارا در سازه­هایی که روی خاک سست قرار دارند تلقی نمی­شود.

References    1-        Connor, J., Laflamme, S., “Structural motion engineering”, Springer, 2014 2-        Fujii, K., Tamura, Y., Sato, T., Wakahara, T., “Wind-induced vibration of tower and practical applications of tuned sloshing damper”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 33, No. (1-2), (1990), 263-272. 3-        Koh, C.G., Mahatma, S. Wang, C.M., “Reduction of structural vibrations by multiple-mode liquid dampers”, Engineering Structures, Vol. 17, No. (2), (1995), 122-128. 4-        Jin, Q., Li, X., Sun, N., Zhou, J., Guan, J., “Experimental and numerical study on tuned liquid dampers for controlling earthquake response of jacket offshore platform”,  Mar. Struct., Vol. 20, No. (4), (2007), 238–254. 5-        Cammelli, S., Li, Y.F. Mijorski, S., “Mitigation of wind-induced accelerations using Tuned Liquid Column Dampers: Experimental and numerical studies”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 155, (2016), 174-181. 6-        Wu, J. C., Shih, M. H., Lin, Y. Y., Shen, Y. C., “Design guidelines for tuned liquid column damper for structures responding to wind”, Eng. Struct., Vol. 27, No. (13), (2005), 1893-1905. 7-        Balendra, T., Wang, C. M., Cheong, H. F., “Effectiveness of tuned liquid column dampers for vibration control of towers”, Eng. Struct., Vol. 17, No. (9), (1995), 668–675. 8-        Gao, H., Kwok, K. C. S., Samali, B., “Optimization of tuned liquid column dampers”, Eng. Struct., Vol. 19, No. (6), (1997), 476-486. 9-        Xue, S. D., Ko, J. M., Xu, Y. L., “Tuned liquid column damper for suppressing pitching motion of structures”, Eng. Struct., Vol. 22, No. (11), (2000), 1538–1551. 10-     Di Matteo, A., Iacono, F.L., Navarra, G., Pirrotta, A., “Experimental validation of a direct pre-design formula for TLCD”, Engineering Structures, Vol. 75, (2014), 528-538. 11-     Kramer, S.L., “Geotechnical Earthquake Engineering”, Prentice Hall, (1996). 12-     Gazetas, G., Mylonakis, G., \"Seismic soil-structure interaction: new evidence and emerging issues\", Geotechnical Special Publication 75, Geotechnical earthquake engineering and soil dynamics III, American Society of Civil Engineers, Reston, Virginia, (1998), 1119-1174. 13-     Wolf, J. P., Song, C., “Some cornerstones of dynamic soil – structure interaction”, Eng. Struct., Vol. 24, No. (1), (2002), 13–28. 14-     Sarlak, A., Saeedmonir, H. Gheyretmand, C., “Numerical and experimental studying of soil-structure interaction in structures resting on loose soil using Laminar Shear Box”, International Journal of Engineering-Transactions B: Applications, Vol.30, No. (11), (2017), 1654-1663. 15-     Xu, Y. Kwok, K. C., “Wind-induced response of soil-structure-damper systems”, J. Wind Eng. Ind. Aerodyn., Vol. 43, No. (1–3), (1992), 2057–2068. 16-     Ghosh, A. Basu, B., “Effect of soil interaction on the performance of tuned mass dampers for seismic applications,” J. Sound Vib., Vol. 274, No. (3), (2005), 1079–1090. 17-     Wang, J. F., Lin, C. C., “Seismic performance of multiple tuned mass dampers for soil-irregular building interaction systems,” Int. J. Solids Struct., Vol. 42, No. (20), (2005), 5536-5554. 18-     Farshidianfar, A., Soheili, S., “Optimized tuned liquid column dampers for earthquake oscillations of high-rise structures including soil effects”, International Journal of Optimization in Civil Engineering, Vol .2, No. (2), (2012), 221-234. 19-     Min, K.W., Kim, Y.W., Kim, J., “Analytical and experimental investigations on performance of tuned liquid column dampers with various orifices to wind-excited structural vibration”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 139, (2015), 62-69. 20-     Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M., “Response surface methodology: process and product optimization using designed experiments”, John Wiley & Sons, 2016. 21-     Rocha, M., “The possibility of solving soil mechanics problems by the use of models”, Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, London, 1957, Vol.  1, 183-188. 22-     Moncarz, P.D., Krawinkler, H., “Theory and application of experimental model analysis in earthquake engineering”, Report No. 50, John Blume Earthquake Engineering Ctr., Stanford Univ, (1981). 23-      Iai, S., “Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field”, Soils and Foundations, Vol. 29, No. (1), (1989), 105-118. 24-     Meymand, P.J., “Shaking table scale model tests of nonlinear soil-pile-superstructure interaction in soft clay”, Doctoral dissertation, Department of Civil Engineering, University of California, Berkeley, (1998). 25-     Zhu, F., Wang, J.T., Jin, F., Lu, L.Q., “Seismic performance of tuned liquid column dampers for structural control using real-time hybrid simulation”, Journal of Earthquake Engineering, Vol. 20, No. (8), (2016), 1370-1390.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir