Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 31, No. 7 (July 2018) 1004-1011    Article in Press

PDF URL: http://www.ije.ir/Vol31/No7/A/1-2845.pdf  
downloaded Downloaded: 108   viewed Viewed: 289

  EULERIAN LAGRANGIAN SIMULATION OF PARTICLE CAPTURE AND DENDRITE FORMATION ON BINARY FIBERS
 
S. Akbarnezhad, A. Soltani Goharrizi and M. Salmanzadeh
 
( Received: December 12, 2017 – Accepted in Revised Form: February 08, 2018 )
 
 

Abstract    The capture efficiency of the small aerosol particle is strongly influenced by the structure of fibrous layers. This study presents particle deposition and dendrite formation on different arrangements of binary fibers. 2-D numerical simulation is performed using the open source software of OpenFOAM. In the instantaneous filtration of a single fiber, obtained results are in good agreement with the existing model. Results showed that addition of nanofiber to microfiber led to high capture efficiency for the particle size 50nm at the cross arrangement with fibers distance 2µm. When particle gets larger, i.e. 150 nm, binary fibers have higher capture efficiency and pressure drop than the single microfiber at all arrangements, especially for the fibers distance 1.5 µm. Therefore, the good fibers arrangement here seems the cross arrangement with the high capture efficiency, average pressure drop and fibers distance 2 µm.

 

Keywords    BinaryFibers; Eulerian-Lagrangian; Dendrite Formation; Deposition Mechanisms

 

چکیده    بازده جمع آوری ذرات آئروسل خیلی ریز، به شدت تاثیرپذیر از لایه های فیبری است. این مطالعه، نشست و رشد دندریتی ذرات را بر روی آرایش­های متفاوت فایبرهایی دوتایی ارائه می­کند. شبیه­سازی عددی دوبعدی با نرم­افزار اپن­فوم انجام شد. نتایج بدست آمده از فرآیند فیلتراسیون لحظه­یی، توافق خوبی با مدل­سازی موجود دارد. نتایج نشان می­دهد که افزودن نانوفایبر به میکروفایبر در آرایش متقاطع از فایبرهای دوتایی با فاصله بین مراکز 2 میکرومتر باعث بازده جمع آوری بزرگتری برای ذرات 50 نانومتر در مقایسه با میکروفایبر منفرد است. برای ذرات بزرگتر 150 نانومتر، بازده و افت فشار در سیستم فایبرهای دوتایی در همه آرایش­ها و بویژه برای فاصله بین مراکز 1.5 میکرومتر، بزرگتر از میکرو فایبر منفرد است. بنابراین در اینجا آرایش مناسب از فایبرهای دوتایی برای اندازه ذرات مورد بررسی، آرایش متقاطع با بازده جمع آوری بالا، افت فشار متوسط و فاصله بین مراکز 2 میکرومتر از فایبرها است.

References   

1.     Dogonchi, A., Hatami, M., Hosseinzadeh, K. and Domairry, G., "Non-spherical particles sedimentation in an incompressible newtonian medium by padé approximation", Powder Technology,  Vol. 278, (2015), 248-256.

2.     Buonanno, G. and Morawska, L., "Ultrafine particle emission of waste incinerators and comparison to the exposure of urban citizens", Waste Management,  Vol. 37, (2015), 75-81.

3.     Kumar, P. and Morawska, L., "Recycling concrete: An undiscovered source of ultrafine particles", Atmospheric Environment,  Vol. 90, (2014), 51-58.

4.     Kumar, P., Morawska, L., Birmili, W., Paasonen, P., Hu, M., Kulmala, M., Harrison, R.M., Norford, L. and Britter, R., "Ultrafine particles in cities", Environment International,  Vol. 66, No., (2014), 1-10.

5.     Wang, W., Xie, M. and Wang, L., "An exact solution of interception efficiency over an elliptical fiber collector", Aerosol Science and Technology,  Vol. 46, No. 8, (2012), 843-851.

6.     Kuwabara, S., "The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small reynolds numbers", Journal of the Physical Society of Japan,  Vol. 14, No. 4, (1959), 527-532.

7.     Hinds, W.C., "Aerosol technology: Properties", Behavior, and Measurement of airborne Particles (2nd,  Vol., No., (1999).

8.     Kirsch, A.A. and Fuchs, N., "Studies on fibrous aerosol filters—ii. Pressure drops in systems of parallel cylinders", Annals of Occupational Hygiene,  Vol. 10, No. 1, (1967), 23-30.

9.     Lee, K. and Liu, B., "Theoretical study of aerosol filtration by fibrous filters", Aerosol Science and Technology,  Vol. 1, No. 2, (1982), 147-161.

10.   Pich, J., "The filtration theory of highly dispersed aerosols", Staub Reinhalt. Luft,  Vol. 5, No., (1965), 16-23.

11.   Stechkina, I., Kirsch, A. and Fuchs, N., "Studies on fibrous aerosol filters—iv calculation of aerosol deposition in model filters in the range of maximum penetration", Annals of Occupational Hygiene,  Vol. 12, No. 1, (1969), 1-8.

12.   Payatakes, A.C. and Tien, C., "Particle deposition in fibrous media with dendrite-like pattern: A preliminary model", Journal of Aerosol Science,  Vol. 7, No. 2, (1976), 85IN195-94100.

13.   Payatakes, A. and Gradoń, L., "Dendritic deposition of aerosol particles in fibrous media by inertial impaction and interception", Chemical Engineering Science,  Vol. 35, No. 5, (1980), 1083-1096.

14.   Payatakes, A. and Gradoń, L., "Dendritic deposition of aerosols by convective brownian diffusion for small, intermediate and high particle knudsen numbers", AIChE Journal,  Vol. 26, No. 3, (1980), 443-454.

15.   Kanaoka, C., Emi, H. and Myojo, T., "Simulation of the growing process of a particle dendrite and evaluation of a single fiber collection efficiency with dust load", Journal of Aerosol Science,  Vol. 11, No. 4, (1980), 377385-383389.

16.   Filippova, O. and Hänel, D., "Lattice-boltzmann simulation of gas-particle flow in filters", Computers & Fluids,  Vol. 26, No. 7, (1997), 697-712.

17.   Lantermann, U. and Hänel, D., "Particle monte carlo and lattice-boltzmann methods for simulations of gas–particle flows", Computers & Fluids,  Vol. 36, No. 2, (2007), 407-422.

18.   Hosseini, S. and Tafreshi, H.V., "Modeling particle-loaded single fiber efficiency and fiber drag using ansys–fluent cfd code", Computers & Fluids,  Vol. 66, No., (2012), 157-166.

19.   Przekop, R. and Gradoń, L., "Dynamics of particle loading in deep-bed filter. Transport, deposition and reentrainment", Chemical and Process Engineering,  Vol. 37, No. 3, (2016), 405-417.

20.   Wang, Q., Maze, B., Tafreshi, H.V. and Pourdeyhimi, B., "A case study of simulating submicron aerosol filtration via lightweight spun-bonded filter media", Chemical Engineering Science,  Vol. 61, No. 15, (2006), 4871-4883.

21.   Przekop, R. and Gradoń, L., "Deposition and filtration of nanoparticles in the composites of nano-and microsized fibers", Aerosol Science and Technology,  Vol. 42, No. 6, (2008), 483-493.

22.   Akbarnezhad, S., Amini, A., Goharrizi, A.S., Rainey, T. and Morawska, L., "Capacity of quartz fibers with high filtration efficiency for capturing soot aerosol particles", International Journal of Environmental Science and Technology,  Vol., No., (2017), 1-10.

23.   Wang, H., Zhao, H., Wang, K., He, Y. and Zheng, C., "Simulation of filtration process for multi-fiber filter using the lattice-boltzmann two-phase flow model", Journal of Aerosol Science,  Vol. 66, No., (2013), 164-178.

24.   Fotovati, S., Tafreshi, H.V., Ashari, A., Hosseini, S. and Pourdeyhimi, B., "Analytical expressions for predicting capture efficiency of bimodal fibrous filters", Journal of Aerosol Science,  Vol. 41, No. 3, (2010), 295-305.

25.   Podgórski, A., Bałazy, A. and Gradoń, L., "Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters", Chemical Engineering Science,  Vol. 61, No. 20, (2006), 6804-6815.

26.   Harris, C., Roekaerts, D., Rosendal, F., Buitendijk, F., Daskopoulos, P., Vreenegoor, A. and Wang, H., "Computational fluid dynamics for chemical reactor engineering", Chemical Engineering Science,  Vol. 51, No. 10, (1996), 1569-1594.

27.   Ferziger, J.H. and Peric, M., "Computational methods for fluid dynamics, Springer Science & Business Media,  (2012).

28.   Fotovati, S., Tafreshi, H.V. and Pourdeyhimi, B., "Influence of fiber orientation distribution on performance of aerosol filtration media", Chemical Engineering Science,  Vol. 65, No. 18, (2010), 5285-5293.

29.   Li, A. and Ahmadi, G., "Dispersion and deposition of spherical particles from point sources in a turbulent channel flow", Aerosol science and Technology,  Vol. 16, No. 4, (1992), 209-226.

30.   Feng, J.Q., "A computational study of particle deposition patterns from a circular laminar jet", arXiv preprint arXiv:1608.04605,  Vol., No., (2016).

31.   Mead-Hunter, R., King, A.J., Kasper, G. and Mullins, B.J., "Computational fluid dynamics (cfd) simulation of liquid aerosol coalescing filters", Journal of Aerosol Science,  Vol. 61, (2013), 36-49.

32.   Ounis, H., Ahmadi, G. and McLaughlin, J.B., "Brownian diffusion of submicrometer particles in the viscous sublayer", Journal of Colloid and Interface Science,  Vol. 143, No. 1, (1991), 266-277.

33.   Macpherson, G.B., Nordin, N. and Weller, H.G., "Particle tracking in unstructured, arbitrary polyhedral meshes for use in cfd and molecular dynamics", International Journal for Numerical Methods in Biomedical Engineering,  Vol. 25, No. 3, (2009), 263-273.

34.   Saleh, A., Hosseini, S., Tafreshi, H.V. and Pourdeyhimi, B., "3-d microscale simulation of dust-loading in thin flat-sheet filters: A comparison with 1-d macroscale simulations", Chemical Engineering Science,  Vol. 99, (2013), 284-291.

35.           Wang, H., Zhao, H., Guo, Z. and Zheng, C., "Numerical simulation of particle capture process of fibrous filters using lattice boltzmann two-phase flow model", Powder Technology,  Vol. 227, (2012), 111-122.


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir