References
[1] W. Wang, M. Xie, L. Wang, An exact solution of interception efficiency over an elliptical fiber collector, Aerosol Science and Technology, Vol. 46, No. 8, pp. 843851, 2012. [2] S. Kuwabara, The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers, Journal of the physical society of Japan, Vol. 14, No. 4, pp. 527532, 1959. [3] W. C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of airborne Particles (2nd, 1999. [4] A. A. Kirsch, N. Fuchs, Studies on fibrous aerosol filters—II. Pressure drops in systems of parallel cylinders, Annals of Occupational Hygiene, Vol. 10, No. 1, pp. 2330, 1967. [5] K. Lee, B. Liu, Theoretical study of aerosol filtration by fibrous filters, Aerosol Science and Technology, Vol. 1, No. 2, pp. 147161, 1982. [6] J. Pich, The filtration theory of highly dispersed aerosols, Staub Reinhalt. Luft, Vol. 5, pp. 1623, 1965. [7] I. Stechkina, A. Kirsch, N. Fuchs, Studies on fibrous aerosol filters—iv calculation of aerosol deposition in model filters in the range of maximum penetration, Annals of Occupational Hygiene, Vol. 12, No. 1, pp. 18, 1969. [8] A. C. Payatakes, C. Tien, Particle deposition in fibrous media with dendritelike pattern: a preliminary model, Journal of Aerosol Science, Vol. 7, No. 2, pp. 85IN19594100, 1976. [9] A. Payatakes, L. Gradoń, Dendritic deposition of aerosol particles in fibrous media by inertial impaction and interception, Chemical Engineering Science, Vol. 35, No. 5, pp. 10831096, 1980. [10] A. Payatakes, L. Gradoń, Dendritic deposition of aerosols by convective Brownian diffusion for small, intermediate and high particle Knudsen numbers, AIChE Journal, Vol. 26, No. 3, pp. 443454, 1980. [11] C. Kanaoka, H. Emi, T. Myojo, Simulation of the growing process of a particle dendrite and evaluation of a single fiber collection efficiency with dust load, Journal of Aerosol Science, Vol. 11, No. 4, pp. 377385383389, 1980. [12] O. Filippova, D. Hänel, LatticeBoltzmann simulation of gasparticle flow in filters, Computers & Fluids, Vol. 26, No. 7, pp. 697712, 1997. [13] U. Lantermann, D. Hänel, Particle Monte Carlo and latticeBoltzmann methods for simulations of gas–particle flows, Computers & fluids, Vol. 36, No. 2, pp. 407422, 2007. [14] S. Hosseini, H. V. Tafreshi, Modeling particleloaded single fiber efficiency and fiber drag using ANSYS–Fluent CFD code, Computers & Fluids, Vol. 66, pp. 157166, 2012. [15] R. Przekop, L. Gradoń, Dynamics of particle loading in deepbed filter. Transport, deposition and reentrainment, Chemical and Process Engineering, Vol. 37, No. 3, pp. 405417, 2016. [16] Q. Wang, B. Maze, H. V. Tafreshi, B. Pourdeyhimi, A case study of simulating submicron aerosol filtration via lightweight spunbonded filter media, Chemical Engineering Science, Vol. 61, No. 15, pp. 48714883, 2006. [17] R. Przekop, L. Gradoń, Deposition and filtration of nanoparticles in the composites of nanoand microsized fibers, Aerosol Science and Technology, Vol. 42, No. 6, pp. 483493, 2008. [18] S. Akbarnezhad, A. Amini, A. S. Goharrizi, T. Rainey, L. Morawska, Capacity of quartz fibers with high filtration efficiency for capturing soot aerosol particles, International Journal of Environmental Science and Technology, pp. 110, 2017. [19] H. Wang, H. Zhao, K. Wang, Y. He, C. Zheng, Simulation of filtration process for multifiber filter using the LatticeBoltzmann twophase flow model, Journal of Aerosol Science, Vol. 66, pp. 164178, 2013. [20] S. Fotovati, H. V. Tafreshi, A. Ashari, S. Hosseini, B. Pourdeyhimi, Analytical expressions for predicting capture efficiency of bimodal fibrous filters, Journal of Aerosol Science, Vol. 41, No. 3, pp. 295305, 2010. [21] A. Podgórski, A. Bałazy, L. Gradoń, Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters, Chemical Engineering Science, Vol. 61, No. 20, pp. 68046815, 2006. [22] C. Harris, D. Roekaerts, F. Rosendal, F. Buitendijk, P. Daskopoulos, A. Vreenegoor, H. Wang, Computational fluid dynamics for chemical reactor engineering, Chemical Engineering Science, Vol. 51, No. 10, pp. 15691594, 1996. [23] S. Fotovati, H. V. Tafreshi, B. Pourdeyhimi, Influence of fiber orientation distribution on performance of aerosol filtration media, Chemical Engineering Science, Vol. 65, No. 18, pp. 52855293, 2010. [24] A. Li, G. Ahmadi, Dispersion and deposition of spherical particles from point sources in a turbulent channel flow, Aerosol science and technology, Vol. 16, No. 4, pp. 209226, 1992. [25] J. Q. Feng, A computational study of particle deposition patterns from a circular laminar jet, arXiv preprint arXiv:1608.04605, 2016. [26] R. MeadHunter, A. J. King, G. Kasper, B. J. Mullins, Computational fluid dynamics (CFD) simulation of liquid aerosol coalescing filters, Journal of Aerosol Science, Vol. 61, pp. 3649, 2013. [27] G. B. Macpherson, N. Nordin, H. G. Weller, Particle tracking in unstructured, arbitrary polyhedral meshes for use in CFD and molecular dynamics, International Journal for Numerical Methods in Biomedical Engineering, Vol. 25, No. 3, pp. 263273, 2009. [28] A. Saleh, S. Hosseini, H. V. Tafreshi, B. Pourdeyhimi, 3D microscale simulation of dustloading in thin flatsheet filters: a comparison with 1D macroscale simulations, Chemical Engineering Science, Vol. 99, pp. 284291, 2013. [29] H. Wang, H. Zhao, Z. Guo, C. Zheng, Numerical simulation of particle capture process of fibrous filters using Lattice Boltzmann twophase flow model, Powder technology, Vol. 227, pp. 111122, 2012.
