Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 31, No. 7 (July 2018) 1463-1471    Article in Press

downloaded Downloaded: 0   viewed Viewed: 82

  VIBRATION BEHAVIOR OF NANOCOMPOSITE PLATE REINFORCED BY PRISTINE AND DEFECTIVE GRAPHENE SHEETS; AN ANALYTICAL APPROACH
 
E. Allahyari and M. Asgari
 
( Received: December 05, 2017 – Accepted: March 09, 2018 )
 
 

Abstract    Free vibration characteristics of polymer composite plates reinforced by graphene nanosheets employing the Eringen nonlocal elasticity theory are investigated. Theoretical formulations are derived based on Hamilton’s principle implementing linear orthotropic constitutive equations of lamina while the behavior of nanostructure points affected by all other nonlocal points is also taken into account. For obtaining the mechanical properties, a new modified Halpin–Tsai model is employed. Governing equations are solved by developing an efficient analytical solution. The accuracy of the presented method is examined, by comparing the results with literature in which a good agreement is observed. Effects of different boundary conditions, volume fraction, graphene sheets orientation angle and Eringen nonlocal parameter on frequency of nanocomposite are analyzed. Effects of the presence of vacancy defects in the nanosheet on the behavior of reinforced composites have been also studied. The results illustrate that by increasing the nonlocal parameter the natural frequency shows a decreasing trend while by increasing the graphene sheet’s volume fraction, natural frequencies increase significantly. It could be concluded that the orientation angle variations in graphene sheets, don’t play an important role on the natural frequency of nanocomposite as well as degradation of properties resulted from vacancy defects.

 

Keywords    Nanocomposite; Graphene sheets; Free vibration; Eringen nonlocal theory; Vacancy defect; Analytical solution

 

چکیده    ارتعاش آزاد ورق­های کامپوزیت پلیمری که با نانوورق­های گرافن تجهیز شده­اند با استفاده از تئوری الاستیسیته غیرمحلی ارینگن مورد بررسی قرار گرفته­اند. روابط تئوری با بکارگیری اصل همیلتون و معادلات خطی و ساختاری چندلایه ارتوتروپیک که نیز در آن رفتار نقاطی از نانوسازه تحت تاثیر دیگر نقاط غیرمحلی می­باشد استخراج شده است. به­منظور به دست آوردن خواص مکانیکی، فرم ارتقاء یافته هالفین-تسای بکار گرفته شده است. معادلات پایه با استفاده از یک روش تحلیلی به دست آمده­اند. دقت روش ارائه شده با مقایسه نتایج آن با دیگر مقالات بررسی شده است که تطابق خوبی مشاهده شده است. اثرات شرایط مرزی مختلف، درصد حجمی، زاویه جهت­گیری ورق­های گرافن و پارامتر غیرمحلی ارینگن بر روی فرکانس نانوکامپوزیت مورد بررسی قرار گرفته­اند. اثرات وجود عیوب شبکه در نانوورق بر روی رفتار کامپوزیت­های تقویت شده نیز مورد بررسی قرار گرفته­اند. نتایج نشان می­دهد که با افزایش پارامتر غیرمحلی فرکانس طبیعی تمایل به نشان دادن رفتاری نزولی دارد درحالیکه با افزایش درصد حجمی نانو گرافن، فرکانس­های طبیعی به طور محسوسی افزایش می­یابند. می­توان نتیجه گرفت که زوایای مختلف جهت­گیری ورق­های گرافن همچنین افت خواص ایجاد شده به واسطه عیوب شبکه، نقش مهمی در فرکانس طبیعی نانوکامپوزیت نخواهند داشت.

References    [1]   T. Ramanathan et al., “Functionalized graphene sheets for polymer nanocomposites,” Nat. Nanotechnol., vol. 3, no. 6, pp. 327–331, 2008. [2]   M. Fadaee and M. R. Ilkhani, “Study on the effect of an eccentric hole on the vibrational behavior of a graphene sheet using an analytical approach,” Acta Mech., vol. 226, no. 5, pp. 1395–1407, May 2015. [3]   P. Ball, “Roll up for the revolution,” Nature, vol. 414, no. 6860, pp. 142–144, 2001. [4]   B. H. Bodily and C. T. Sun, “Structural and equivalent continuum properties of single-walled carbon nanotubes,” Int. J. Mater. Prod. Technol., vol. 18, no. 4–6, pp. 381–397, 2003. [5]   A. C. Eringen, Nonlocal continuum field theories. Springer Science & Business Media, 2002. [6]   R. Ansari, S. Ajori, and B. Motevalli, “Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation,” Superlattices Microstruct., vol. 51, no. 2, pp. 274–289, 2012. [7]   E. Allahyari and M. Fadaee, “Analytical investigation on free vibration of circular double-layer graphene sheets including geometrical defect and surface effects,” Compos. Part B Eng., vol. 85, pp. 259–267, Feb. 2015. [8]   M. Amabili, “Nonlinear vibrations of viscoelastic rectangular plates,” J. Sound Vib., vol. 362, no. Supplement C, pp. 142–156, 2016. [9]   Z. Sarvi, M. Asgari, M. Shariyat, and H. S. Googarchin, “Explicit expressions describing elastic properties and buckling load of BN nanosheets due to the effects of vacancy defects,” Superlattices Microstruct., vol. 88, pp. 668–678, 2015. [10]    M. Shariyat, Z. Sarvi, and M. Asgari, “A unit-cell-based three-dimensional molecular mechanics analysis for buckling load, effective elasticity and Poisson’s ratio determination of the nanosheets,” Mol. Simul., vol. 7022, no. December 2015, pp. 1–17, 2015. [11]   O. Seraj, “Research Note a Tabu Search Method for a New Bi-Objective Open Shop Scheduling Problem By a Fuzzy Multi- Objective Decision Making Approach,” Int. J. Eng. - Trans. B Appl., vol. 22, no. 3, p. 269, Dec. 2009. [12]  A. C. and S. A. S. and M. Y. Khiabani, “STRESS TRANSFER MODELING IN CNT REINFORCED COMPOSITES USING CONTINUUM MECHANICS,” IJE Trans. B Appl., vol. 21, no. 3, pp. 227–234, 2008. [13]  R. Alibakhshi, “THE EFFECT OF ANISOTROPY ON FREE VIBRATION OF RECTANGULAR COMPOSITE PLATES WITH PATCH MASS,” Int. J. Eng. - Trans. B Appl., vol. 25, no. 3, p. 223, 2012. [14]   M. Behzad, M. Tajvidi, G. Ebrahimi, and R. H. Falk, “Dynamic Mechanical Analysis Of Compatibilizer Effect On The Mechanical Properties Of Wood Flour - High-Density Polyethylene Composites,” Int. J. Eng. - Trans. B Appl., vol. 17, no. 1, pp. 95–104, 2004. [15]   S. Stankovich et al., “Graphene-based composite materials,” Nature, vol. 442, no. 7100, pp. 282–286, Jul. 2006. [16]  A. C. Eringen, “On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves,” J. Appl. Phys., vol. 54, no. 9, pp. 4703–4710, 1983. [17]  J. N. Reddy, “Mechanics of laminated composite plates- Theory and analysis(Book),” Boca Raton, FL CRC Press. 1997., 1997. [18]    J. C. Affdl and J. L. Kardos, “The Halpin‐Tsai equations: a review,” Polym. Eng. Sci., vol. 16, no. 5, pp. 344–352, 1976. [19]  A. Alibeigloo and A. Emtehani, “Static and free vibration analyses of carbon nanotube-reinforced composite plate using differential quadrature method,” Meccanica, vol. 1, no. 50, pp. 61–76, 2015. [20]   S. J. V Frankland, V. M. Harik, G. M. Odegard, D. W. Brenner, and T. S. Gates, “The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation,” Compos. Sci. Technol., vol. 63, no. 11, pp. 1655–1661, 2003. [21]  H.-S. Shen, “Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments,” Compos. Struct., vol. 91, no. 1, pp. 9–19, Nov. 2009. [22]  S. C. Pradhan and J. K. Phadikar, “Nonlocal elasticity theory for vibration of nanoplates,” J. Sound Vib., vol. 325, no. 1–2, pp. 206–223, Aug. 2009. [23]    J. N. Reddy, Theory and analysis of elastic plates and shells. CRC press, 2006. [24]    P. Zhu, Z. X. Lei, and K. M. Liew, “Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory,” Compos. Struct., vol. 94, no. 4, pp. 1450–1460, 2012. [25]   C.-P. Wu and H.-Y. Li, “Three-dimensional free vibration analysis of functionally graded carbon nanotube-reinforced composite plates with various boundary conditions,” J. Vib. Control, vol. 22, no. 1, pp. 89–107, Jan. 2016. [26]   M. Sadeghi and R. Naghdabadi, “Nonlinear vibrational analysis of single-layer graphene sheets,” Nanotechnology, vol. 21, no. 10, p. 105705, Mar. 2010. [27]  F. Hao, D. Fang, and Z. Xu, “Mechanical and thermal transport properties of graphene with defects,” Appl. Phys. Lett., vol. 99, no. 4, p. 41901, 2011.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir