IJE TRANSACTIONS A: Basics Vol. 31, No. 7 (July 2018) 1508-1516    Article in Press

downloaded Downloaded: 0   viewed Viewed: 48

S. Abbasi, M. Zeinali and P. Nejadabbasi
( Received: November 11, 2017 – Accepted: February 23, 2018 )

Abstract    Abstarct In this paper, a new approach to optimize an Autonomous Underwater Vehicle (AUV) hull geometry is presented. Using this methode, the nose and tail of an underwater vehicle are designed, such that their length constraints due to the arrangement of different components in the AUV body are properly addressed. In the current study, an optimal design for the body profile of a torpedo-shaped AUV is conducted, and a multi-objective optimization scheme based on the optimization algorithm NSGA-II (Non-dominated Sorting Genetic Algorithm-II, as an evolutionary algorithm) is employed. In addition, predefined geometrical constraints are considered so that equipment with the specific dimensions can be placed inside the AUV space without any effect on the AUV volume and the wetted surface. By optimizing the parameters of the newly presented profile, in addition to maximizing the volume and minimizing the wetted surface area, more diversed shapes can be achieved than with the ‘Myring’ profile. A CFD analysis of the final optimal design indicates that with the help of the proposed profile, the hydrodynamic parameters for the AUV hull are improved effectively.


Keywords    Autonomous underwater vehicles, Hull shape design, multi-objective optimization


چکیده    چكيده: در مقاله حاضر یک روش جدید برای بهینه سازی هندسه بدنه یک وسیله زیرسطحی خودکنترل اراائه شده است. به کمک این روش دماغه و دم وسیله زیرسطحی به گونه ای طراحی می شود که قیود طولی ناشی از جانمایی اجزاء متفاوت در داخل بدنه مورد ملاحظه قرار گیرد. در پژوهش حاضر یک طراحی بهینه برای بدنه وسیله زیرسطحی اژدری شکل انجام شده است و روش بهینه سازی چند هدفه بر مبنای الگوریتم بهینه سازیNSGA-II به کار گرفته شده است. همچنین قیود هندسی تعیین شده به گونه ای درنظرگرفته شده اند که قطعات با ابعاد معین را بتوان در داخل بدنه وسیله زیرسطحی نصب کرد بدون آنکه تاثیری در حجم بدنه و یا سطح تر شده وسیله زیرسطحی خودکنترل داشته باشند. با بهینه کردن پارامترهای هندسی پروفیل جدید به کارگرفته شده، علاوه برماکزیمم کردن حجم بدنه می توان به سطح تر شده کمتری دست یافت. ضمن آنکه در مقایسه با پروفیل متداول مایربنگ می توان به تنوعی از شکل های بدنه در یک شرایط هندسی خاص دست یافت. شبیه سازی عددی جریان در طرح بهینه نهایی نشان می دهد که به کمک پروفیل به کارگرفته شده پارامترهای هیدرودینامیکی بدنه زیرسطحی خودکنترل به طور موثری بهبود می یابد.

References    References   Sahu, B. K., Bidyadhar, S. “The state of art of autonomous underwater vehicles in current and future decades”, Automation, Control, Energy and Systems (ACES), 2014 First International Conference. AUVAC, Autonomous Undersea Vehicle Applications Center (AUVAC), (2015), URL:http://www.auvac.org/ ICES. International Council for the Exploration of the Sea (ICES), (2015),  URL:http://www..ices.dk/ Breivik, M., Fossen, T. I., “Guidance laws for autonomous underwater vehicles”, (2009).Carmichael, B. H., “Underwater vehicle drag reduction through choice of shape”, AIAA Second Propulsion Joint Specialist Conference, (1996).Packwood, A. R., Huggins, A., “Afterbody shaping and transition prediction for a laminar flow underwater vehicle”, (1994). Myring, D., “A theoretical study of body drag in subcritical axisymmetric flow”, Aeronaut. Technical Report, Royal Aircraft Establishment, Hants, UK, Q. 27 ,(1976), 186-194Paster, D., “Importance of hydrodynamic considerations for underwater vehicle design”, In OCEANS'86 (1986), 1413-1422. Martz, M. A., “Preliminary design of an autonomous underwater vehicle using a multiple-objective genetic optimizer”, (Doctoral dissertation, Virginia Polytechnic Institute and State University). (2008).Alvarez, A., Bertram, V., Gualdesi, L., “Hull hydrodynamic optimization of autonomous underwater vehicles operating at snorkeling depth”, Ocean Engineering, 36(1) (2009), 105-112.Joung, T. H., Sammut, K., He, F., Lee, S. K. “Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis”, International Journal of Naval Architecture and Ocean Engineering, 4(1) (2012), pp. 45-57.Koh, S. K., Jung, S. Y., Lee, N. J., “Optimal design of AUV endcaps”, In OCEANS (2011), 1-6. Vasudev, K. L, Sharma, R., Bhattacharyya, S. K. A CAGD+CFD integrated optimization model for design of AUVs, In OCEANS, TAIPEI (2014), 1-8Alam, K., Ray, T., Anavatti, S. G. “Design and construction of an autonomous underwater vehicle”, Neurocomputing, 142(2014), 16-29.Sadati, R. Tavakkoli-Moghaddam, B. Naderi and M. Mohammadi , “ Solving a new multi-objective unrelated parallel machines scheduling problem by hybrid teaching-learning based optimization ”, INTERNATIONAL JOURNAL OF ENGINEERING,    TRANSACTIONS B: Applications, Vol. 30, No. 2 (February 2017), 224-233.  Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. A. M. T., “A fast and elitist multiobjective genetic algorithm: NSGA-II”, Evolutionary Computation, IEEE Transactions on, 6(2) (2002), 182-197.Chinneck, J. W., “Practical optimization: a gentle introduction”, Systems and Computer Engineering, Carleton University, Ottawa. ( 2006), http://www. sce. carleton. ca/faculty/chinneck/po. html.  Ponsich, A., Azzaro-Pantel, C., Domenech, S., Pibouleau, L., “Constraint handling strategies in Genetic Algorithms application to optimal batch plant design”, Chemical Engineering and Processing: Process Intensification, 47(3) (2008), 420-434.Shih, T. -H., et al., “A new  eddy viscosity model for high Reynolds number turbulent flows” , Computers & Fluids, 24.3(1995), pp.227-238.Launder, B. E., Spalding, D. B., “The numerical computation of turbulent flows” , Computer Methods in Applied Mechanics and Engineering, 3.2(1974), 269-289.A. Khalkhalia, S. Roshanfekrb, M. Toraab, “Multi-objective Optimization of a Projectile Tip for Normal Penetration”, INTERNATIONAL JOURNAL OF ENGINEERING TRANSACTIONS A: Basics’   Vol. 26, No. 10, (October  2013), 1225-1234

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir