IJE TRANSACTIONS B: Applications Vol. 31, No. 8 (August 2018) 1159-1165    Article in Press

PDF URL: http://www.ije.ir/Vol31/No8/B/1-2855.pdf  
downloaded Downloaded: 41   viewed Viewed: 100

S. Abbaspour and S. K. Sadrnezhaad
( Received: February 03, 2018 – Accepted in Revised Form: April 10, 2018 )

Abstract    Arrayed Ti6Al4V nanotubes (TNT) coated with hydroxyapatite (HA) were synthesized via electrochemical anodization method. Paracetamol was loaded onto TNT-HA electrode. Effects of anodization, nanotube formation and hydroxyapatite deposition on sorption and release of the drug were investigated. Saturation time of paracetamol on the anodized samples was 30% shorter than the hydroxyapatite-coated samples. Release behavior of the loaded drug was studied by (a) plunging the probe into phosphate buffered saline (PBS), (b) sampling the drug-loaded PBS at different times and (c) analyzing the solution via ultraviolet-visible (UV-vis) spectroscopy. Results showed that HA electrodes hold higher amounts of paracetamol than the anodized samples at longer times. Scanning electron microscopy (SEM), MTT assay, and nanoindentation tests were used to characterize the produced electrodes.


Keywords    Titanium nanotubes; Drug capacity; Drug release; Hydroxyapatite; Paracetamol


چکیده    نانولوله های ردیفی Ti6Al4V (TNT) پوشش داده شده با هیدروکسی آپاتیت (HA) با استفاده از روش آندایزینگ الکتروشیمیایی سنتز شدند. پاراستامول بر روی الکترود TNT-HA بارگذاری شد. تاثیر آندایزینگ، تشکیل نانولوله و نشستن هیدروکسی آپاتیت بر جذب و واجذب دارو مورد بررسی قرار گرفت. زمان اشباع پاراستامول بر روی نمونه های آندایز شده 30 درصدکمتر از نمونه های پوشش داده شده با هیدروکسی آپاتیت بود. رفتار رهایش داروی بارگیری شده از طریق (a) وارد کردن پروب به داخل محلول نمکی فسفات بافرشده PBS))، (b) نمونه برداری از محلول دارو دار PBS در زمان های مختلف، و (c) تجزیه محلول با استفاده از طیف سنجی با اشعه ماوراء بنفش (UV-vis) انجام شد. نتایج نشان داد که الکترودهای HA مقادیر بیشتری از پاراستامول را در مقایسه با نمونه های آندایز شده در زمان های طولانی نگهداری می کنند. برای مشخص کردن الکترودهای تولید شده از میکروسکوپ الکترونی روبسی (SEM)، آزمایش MTT و آزمون نانوایندنتیشن استفاده شد.


1.     Yao, C. and Webster, T.J., "Prolonged antibiotic delivery from anodized nanotubular titanium using a co‐precipitation drug loading method", Journal of Biomedical Materials Research Part B: Applied Biomaterials,  Vol. 91, No. 2, (2009), 587-595.

2.     Xiao, X., Yang, L., Guo, M., Pan, C., Cai, Q. and Yao, S., "Biocompatibility and in vitro antineoplastic drug-loaded trial of titania nanotubes prepared by anodic oxidation of a pure titanium", Science in China Series B: Chemistry,  Vol. 52, No. 12, (2009), 2161-2165.

3.     Cai, K., Jiang, F., Luo, Z. and Chen, X., "Temperature‐responsive controlled drug delivery system based on titanium nanotubes", Advanced Engineering Materials,  Vol. 12, No. 9, (2010), B565-B570.

4.     Moseke, C., Hage, F., Vorndran, E. and Gbureck, U., "Tio2 nanotube arrays deposited on ti substrate by anodic oxidation and their potential as a long-term drug delivery system for antimicrobial agents", Applied Surface Science,  Vol. 258, No. 14, (2012), 5399-5404.

5.     Gulati, K., Ramakrishnan, S., Aw, M.S., Atkins, G.J., Findlay, D.M. and Losic, D., "Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion", Acta Biomaterialia,  Vol. 8, No. 1, (2012), 449-456.

6.     Aw, M.S. and Losic, D., "Ultrasound enhanced release of therapeutics from drug-releasing implants based on titania nanotube arrays", International Journal of Pharmaceutics,  Vol. 443, No. 1-2, (2013), 154-162.

7.     ăalışkan, N., Bayram, C., Erdal, E., Karahaliloglu, Z. and Denkbaş, E.B., "Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion", Materials Science and Engineering: C,  Vol. 35, (2014), 100-105.

8.     Rajesh, P., Mohan, N., Yokogawa, Y. and Varma, H., "Pulsed laser deposition of hydroxyapatite on nanostructured titanium towards drug eluting implants", Materials Science and Engineering: C,  Vol. 33, No. 5, (2013), 2899-2904.

9.     Gulati, K., Kant, K., Findlay, D. and Losic, D., "Periodically tailored titania nanotubes for enhanced drug loading and releasing performances", Journal of Materials Chemistry B,  Vol. 3, No. 12, (2015), 2553-2559.

10.   Hamlekhan, A., Sinha-Ray, S., Takoudis, C., Mathew, M.T., Sukotjo, C., Yarin, A.L. and Shokuhfar, T., "Fabrication of drug eluting implants: Study of drug release mechanism from titanium dioxide nanotubes", Journal of Physics D: Applied Physics,  Vol. 48, No. 27, (2015), 275401.

11.   Park, S.W., Lee, D., Choi, Y.S., Jeon, H.B., Lee, C.-H., Moon, J.-H. and Kwon, I.K., "Mesoporous TiO2 implants for loading high dosage of antibacterial agent", Applied Surface Science,  Vol. 303, (2014), 140-146.

12.   Ren, W., Zeng, L., Shen, Z., Xiang, L., Gong, A., Zhang, J., Mao, C., Li, A., Paunesku, T. and Woloschak, G.E., "Enhanced doxorubicin transport to multidrug resistant breast cancer cells via TiO2 nanocarriers", RSC Advances,  Vol. 3, No. 43, (2013), 20855-20861.

13.   Venkatasubbu, G.D., Ramasamy, S., Ramakrishnan, V. and Kumar, J., "Folate targeted pegylated titanium dioxide nanoparticles as a nanocarrier for targeted paclitaxel drug delivery", Advanced Powder Technology,  Vol. 24, No. 6, (2013), 947-954.

14.   Ge, F., Lin, J., Huang, X., Cheng, K., Wang, H. and Weng, W., "Preparation and drug release behavior of TiO2 nanorod films with incorporating mesoporous bioactive glass", Thin Solid Films,  Vol. 584, (2015), 2-8.

15.   Manafi, S., Rahimipour, M., Yazdani, B., Sadrnezhad, S. and Amin, M., "Hydrothermal synthesis of aligned hydroxyapatite nanorods with ultra-high crystallinity",  International Journal of Engineering, Transactions B: Applications, Vol. 21, No. 2, (2008) 109-116

16.   Gulati, K., Aw, M.S. and Losic, D., "Drug-eluting ti wires with titania nanotube arrays for bone fixation and reduced bone infection", Nanoscale Research Letters,  Vol. 6, No. 1, (2011), 571-580.

17.   Zwilling, V., Aucouturier, M. and Darque-Ceretti, E., "Anodic oxidation of titanium and ta6v alloy in chromic media. An electrochemical approach", Electrochimica Acta,  Vol. 45, No. 6, (1999), 921-929.

18.   Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R., Chen, Z. and Dickey, E.C., "Titanium oxide nanotube arrays prepared by anodic oxidation", Journal of Materials Research,  Vol. 16, No. 12, (2001), 3331-3334.

19.   Adachi, M., Murata, Y., Harada, M. and Yoshikawa, S., "Formation of titania nanotubes with high photo-catalytic activity", Chemistry Letters,  Vol. 29, No. 8, (2000), 942-943.

20.   Jayamohan, H., Smith, Y.R., Hansen, L.C., Mohanty, S.K., Gale, B.K. and Misra, M., "Anodized titania nanotube array microfluidic device for photocatalytic application: Experiment and simulation", Applied Catalysis B: Environmental,  Vol. 174, (2015), 167-175.

21.   Pang, Y.L., Lim, S., Ong, H.C. and Chong, W.T., "A critical review on the recent progress of synthesizing techniques and fabrication of TiO2-based nanotubes photocatalysts", Applied Catalysis A: General,  Vol. 481, (2014), 127-142.

22.   Varghese, O.K., Paulose, M. and Grimes, C.A., "Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells", Nature Nanotechnology,  Vol. 4, No. 9, (2009), 592-597.

23.   Ji, Y., Zhang, M., Cui, J., Lin, K.-C., Zheng, H., Zhu, J.-J. and Samia, A.C.S., "Highly-ordered TiO2 nanotube arrays with double-walled and bamboo-type structures in dye-sensitized solar cells", Nano Energy,  Vol. 1, No. 6, (2012), 796-804.

24.   Popat, K.C., Eltgroth, M., LaTempa, T.J., Grimes, C.A. and Desai, T.A., "Titania nanotubes: A novel platform for drug‐eluting coatings for medical implants?", Small,  Vol. 3, No. 11, (2007), 1878-1881.

25.   Hu, Y., Cai, K., Luo, Z., Xu, D., Xie, D., Huang, Y., Yang, W. and Liu, P., " TiO2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells", Acta Biomaterialia,  Vol. 8, No. 1, (2012), 439-448.

26.   Oliver, W.C. and Pharr, G.M., "Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology", Journal of Materials Research,  Vol. 19, No. 1, (2004), 3-20.

27.   Zalnezhad, E., Hamouda, A., Faraji, G. and Shamshirband, S., " TiO2 nanotube coating on stainless steel 304 for biomedical applications", Ceramics International,  Vol. 41, No. 2, (2015), 2785-2793.

28.   Zhao, M., Li, J., Li, Y., Wang, J., Zuo, Y., Jiang, J. and Wang, H., "Gradient control of the adhesive force between ti/ TiO2 nanotubular arrays fabricated by anodization", Scientific Reports,  Vol. 4, (2014), 71-78.

29.   Yousefpour, M., Vali, I. and Saebnoori, E., "Surface activation of niti alloy by using electrochemical process for biomimetic deposition of hydroxyapatite coating (technical note)", International Journal of Engineering, Transactions A: Basics,  Vol. 27, No. 10, (2014), 1627-1634.

30.   Wang, J. and Lin, Z., "Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization", Chemistry of Materials,  Vol. 20, No. 4, (2008), 1257-1261.

31.   Hijon, N., Cabanas, M., Izquierdo-Barba, I. and Vallet-Regi, M., "Bioactive carbonate− hydroxyapatite coatings deposited onto ti6al4v substrate", Chemistry of Materials,  Vol. 16, No. 8, (2004), 1451-1455.

32.   Parcharoen, Y., Kajitvichyanukul, P., Sirivisoot, S. and Termsuksawad, P., "Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications", Applied Surface Science,  Vol. 311, (2014), 54-61.

33.   Zhang, H., Krajewski, J., Zhang, Z., Masopust, M. and Xiao, D.T., "Nano-hydroxyapatite coated femoral stem implant by electrophoretic deposition", MRS Online Proceedings Library Archive,  Vol. 975, (2006).

34.   Schopper, C., Moser, D., Goriwoda, W., Ziya‐Ghazvini, F., Spassova, E., Lagogiannis, G., Auterith, A. and Ewers, R., "The effect of three different calcium phosphate implant coatings on bone deposition and coating resorption: A long‐term histological study in sheep", Clinical oral Implants Research,  Vol. 16, No. 3, (2005), 357-368.

35.   Bauer, S., Park, J., von der Mark, K. and Schmuki, P., "Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes", Acta Biomaterialia,  Vol. 4, No. 5, (2008), 1576-1582.

36.   Poelma, F.G., Breńs, R. and Tukker, J.J., "Intestinal absorption of drugs. Iii. The influence of taurocholate on the disappearance kinetics of hydrophilic and lipophilic drugs from the small intestine of the rat", Pharmaceutical Research,  Vol. 7, No. 4, (1990), 392-397.

37.   Peng, L., Mendelsohn, A.D., LaTempa, T.J., Yoriya, S., Grimes, C.A. and Desai, T.A., "Long-term small molecule and protein elution from TiO2 nanotubes", Nano Letters,  Vol. 9, No. 5, (2009), 1932-1936.

38.   Bard, A.J. and Mirkin, M.V., "Scanning electrochemical microscopy, CRC Press,  (2012).

39.           Gongadze, E., Kabaso, D., Bauer, S., Slivnik, T., Schmuki, P., van Rienen, U. and Iglič, A., "Adhesion of osteoblasts to a nanorough titanium implant surface", International Journal of Nanomedicine,  Vol. 6, (2011), 1801.

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir