IJE TRANSACTIONS B: Applications Vol. 31, No. 8 (August 2018) 1215-1221    Article in Press

PDF URL: http://www.ije.ir/Vol31/No8/B/8-2892.pdf  
downloaded Downloaded: 87   viewed Viewed: 279

O. Rivera, M. Mauledoux, A. Valencia, R. Jimenez and O. Avilés
( Received: February 16, 2018 – Accepted in Revised Form: July 02, 2018 )

Abstract    In this paper, a hardware in the loop simulation (HIL) is presented. This application is purposed as the first step before a real implementation of a Generalized Predictive Control (GPC) on a micro-grid system located at the Military University Campus in Cajica, Colombia. The designed GPC, looks for keep the battery bank State of Charge (SOC) over the 70% and under the 90%, what ensures the best performance in the battery bank according its technical specifications. The GPC algorithm was embedded on a STM32 microcontroller and the micro-grid model was embedded on an ARDUINO MEGA microcontroller.


Keywords    Generalized Predictive Control, Hardware in the Loop, Micro-grid, STM32


چکیده    در این مقاله، یک سخت افزار در شبیه سازی حلقه (HIL) ارائه شده است. این برنامه به عنوان اولین قدم قبل از اجرای واقعی یک کنترل پیش بینی عمومی (GPC) بر روی یک سیستم میکرو شبکه واقع در پردیس دانشگاه نظامی در Cajica، کلمبیا است. GPC طراحی شده است، انتظار می رود که شارژ باتری در حالت شارژ (SOC) بیش از 70٪ و کمتر از 90٪ باشد، که بهترین عملکرد را در باتری با توجه به مشخصات فنی آن تضمین می کند. الگوریتم GPC بر روی یک میکروکنترلر STM32 قرار گرفت و مدل میکرو شبکه بر روی یک میکروکنترلر ARDUINO MEGA تعبیه شد.


1.     Mauledoux, M., Mejía-Ruda, E. and Caldas, O.I., "Multiobjective evolutionary algorithms moea to solve task allocation problemsin multiagent systems for dc microgrid", Applied Mechanics & Materials,  Vol. 700, No. 4, (2014), 24-27.

2.     ME, R.S.R.B., ME, S.D. and ME, S.J., "A closed loop control of quadratic boost converter using pid controller", International Journal of Engineering-Transactions B: Applications,  Vol. 27, No. 11, (2014), 1653-1662.

3.     Devabhaktuni, V., Alam, M., Depuru, S.S.S.R., Green II, R.C., Nims, D. and Near, C., "Solar energy: Trends and enabling technologies", Renewable and Sustainable Energy Reviews,  Vol. 19, No., (2013), 555-564.

4.     Commission, F.E.R., "Assessment of demand response and advanced metering",  (2008).

5.     Mork, B. and Weaver, W., "Smart grids and micro-grids: What are they really", in Minnesota Power Systems Conference. (2009), 3-5.

6.     Gholizade-Narm, H., "A novel control strategy for a single-phase grid-connected power injection system", International Journal of Engineering-Transactions C: Aspects,  Vol. 27, No. 12, (2014), 1841-1849.

7.     Ara, A.L., Tolabi, H.B. and Hosseini, R., "Dynamic modeling and controller design of distribution static compensator in a microgrid based on combination of fuzzy set and galaxy-based search algorithm", International Journal of Engineering-Transactions A: Basics,  Vol. 29, No. 10, (2016), 1392-1400.

8.     Clarke, D.W., Mohtadi, C. and Tuffs, P., "Generalized predictive control—part i. The basic algorithm", Automatica,  Vol. 23, No. 2, (1987), 137-148.

9.     Chidrawar, S. and Patre, B., "Generalized predictive control and neural generalized predictive control", Leonardo Journal of Sciences,  Vol. 7, No. 13, (2008), 133-152.

10.   Holkar, K. and Waghmare, L., "An overview of model predictive control", International Journal of Control and Automation,  Vol. 3, No. 4, (2010), 47-63.

11.   Tang, C.Y., Guo, Y. and Jiang, J.N., "Nonlinear dual-mode control of variable-speed wind turbines with doubly fed induction generators", IEEE Transactions on Control Systems Technology,  Vol. 19, No. 4, (2011), 744-756.

12.   Katiraei, F. and Abbey, C., "Diesel plant sizing and performance analysis of a remote wind-diesel microgrid", in Power Engineering Society General Meeting, 2007. IEEE. (2007), 1-8.

13.   Ordys, A.W., "Predictive control for industrial applications", Annual Reviews in Control,  Vol. 25, (2001), 13-24.

14.   Rodríguez, P. and Dumur, D., "Generalized predictive control robustification under frequency and time-domain constraints", IEEE Transactions on Control Systems Technology,  Vol. 13, No. 4, (2005), 577-587.

15.   Guo, W., Wang, W. and Qiu, X., "An improved generalized predictive control algorithm based on pid", in Intelligent Computation Technology and Automation (ICICTA), 2008 International Conference on, IEEE. Vol. 1, (2008), 299-303.

16.   Zhou, L. and Qu, D., "Study of generalized predictive control scheme and algorithm based on artificial neural network", in Information Acquisition, 2006 IEEE International Conference on, IEEE. (2006), 1208-1212.

17.   Hou, G., Bai, X. and Huang, R., "Application of improved generalized predictive control to coordinated control system in supercritical unit", in Industrial Electronics and Applications (ICIEA), 2014 IEEE 9th Conference on, IEEE. (2014), 1591-1595.

18.   Fioriti, D., Giglioli, R., Poli, D., Lutzemberger, G., Vanni, A. and Salza, P., "Optimal sizing of a hybrid mini-grid considering the fuel procurement and a rolling horizon system operation", in Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), 2017 IEEE International Conference on, IEEE., (2017), 1-6.

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir