Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 30, No. 11 (November 2017) 1338-1347    Article in Press

PDF URL: http://www.ije.ir/Vol30/No11/B/6.pdf  
downloaded Downloaded: 0   viewed Viewed: 209

  IMPACTS OF PREMIUM BOUNDS ON THE OPERATION OF PUT OPTION AND DAY-AHEAD ELECTRICITY MARKETS
 
H. Raouf Sheybani and M. Oloomi Buygi
 
( Received: March 10, 2017 – Accepted: September 08, 2017 )
 
 

Abstract    In this paper‎, ‎the impacts of premium bounds of put option contracts on the operation of put option and day-ahead electricity markets are studied‎. ‎To this end‎, ‎first a comprehensive equilibrium model for a joint put option and day-ahead markets is presented‎. ‎Interaction between put option and day-ahead markets‎, ‎uncertainty in fuel price, impact of premium bounds, and elasticity of consumers to strike price‎, ‎premium price, and day-ahead price are taken into account in this model‎. ‎Then, a new method for put option pricing is proposed. By applying the presented model to a test system the impacts of premium bounds on equilibrium of joint put option and day-ahead markets are studied‎.

 

Keywords    Equilibrium of joint put option and day-ahead markets, Option market modeling, Supply function competition‎, Put option pricing.

 

چکیده    در این مقاله، تأثیر مرزهای قیمت اختیار قرارداد اختیار فروش بر عملکرد بازارهای اختیار فروش و بازار روز بعد انرژی الکتریکی مطالعه شده است. بدین منظور، ابتدا یک مدل تعادلی جامع مشترک برای بازارهای اختیار فروش و روز بعد ارائه شده است. تأثیر متقابل بازار اختیار فروش و بازار روز بعد، عدم قطعیت در قیمت سوخت، تأثیر مرزهای قیمت اختیار، و کشش تقاضا مصرف­کنندگان به قیمت اجرا، قیمت اختیار و قیمت بازار روز بعد در این مدل لحاظ گردیده است. سپس یک مدل جدید برای قیمت­گذاری قرارداد اختیار فروش ارائه گردیده است. در پایان نیز، با اعمال این مدل به یک شبکه تست، تأثیر مرزهای قیمت اختیار بر نقطه تعادل مشترک بازارهای اختیار فروش و روز بعد مطالعه شده است.

References    [1]     S. J. Deng and S. S. Oren, “Electricity derivatives and risk management,” Energy, vol. 31, no. 6, pp. 940–953, 2006. [2]     W. Ruiqing, L. Yuzeng, and Z. Shaohua, “Analysis of supply function equilibrium in electricity markets with financial options contracts,” in DRPT2008, Nanjing, China, 2008. [3]     J. C. Hull, Options, Futures, and Other Derivatives, Bisiness and EconomicsPower system oscillations. Boston: Prentice Hall, 2012. [4]     “Australian electricity futures and options,” Available at: https://asxenergy.com.au/products/electricity futures, accessed: 2015-09-30. [5]     “European electricity exchange,” Available at: https://www.eex.com/en/products/power/power-derivatives-market, accessed: 2016-05-30. [6]     T. W. Gedra, “Optional forward contracts for electric power markets,” Power Systems, IEEE Transactions on, vol. 9, no. 4, pp. 1766–1773, Nov. 1994. [7]     Y. Oum, S. S. Oren, and S. J. Deng, “Hedging quantity risks with standard power options in a competitive wholesale electricity market,” Naval Research Logistics, vol. 53, no. 7, pp. 697–712, Oct. 2006. [8]     G. A. V. S´anchez, J. M. Alzate, A. I. Cadena, and J. M. Benavides, “Setting up standard power options to hedge price-quantity risk in a competitive electricity market: the colombian case,” Power Systems, IEEE Transactions on, vol. 26, no. 3, pp. 1493–1500, Aug. 2011. [9]     S. Pineda and A. J. Conejo, “Managing the financial risks of electricity producers using options,” Energy Economics, vol. 34, no. 6, pp. 2216– 2227, Nov. 2012. [10]   S. Pineda and A. J. Conejo, “Using electricity options to hedge against financial risks of power producers,” Journal of Modern Power Systems and Clean Energy, vol. 1, no. 2, pp. 101–109, Sept. 2013. [11]   B. Bezerra, L. A. Barroso, and M. V. Pereira, “Bidding strategies with fuel supply uncertainty in auctions of long-term energy call options,” Power Systems, IEEE Transactions on, vol. 26, no. 2, pp. 653–660, May 2011. [12]   P. Mathuria and R. Bhakar, “Integrated risk management model for portfolio selection in multiple markets,” in 2014 IEEE PES General Meeting, July 2014, pp. 1–5. [13]   T. S. Chung, S. H. Zhang, C. W. Yu, and K. P. Wong, “Electricity market risk management using forward contracts with bilateral options,” in Generation, Transmission and Distribution, IEE Proceedings-, vol. 150, no. 5. IET, Sept. 2003, pp. 588–594. [14]   W. Ruiqing, L. Yuzeng, and Z. Shaohua, “Equilibrium for spot and options markets with capacity constraints,” in Chinese Control Conference, July 2008, pp. 758–762. [15]   Z. Shaohua, F. Xinhua, and W. Xian, “Effects of option contracts on electricity markets: A cournot equilibrium analysis,” in Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2012. [16]   W. Ruiqing, L. Yuzeng, and Z. Shaohua, “Joint equilibrium analysis for options and spot gaming in electricity markets with transmission constraints,” in Intelligent Control and Automation, 7th World Congress on, June 2008, pp. 6497–6502. [17]   V. Fanelli, L. Maddalena, and S. Musti, "Asian options pricing in the day-ahead electricity market," Sustainable Cities and Society, Elsevier, Vol. 27, Nov. 2016. [18]  H. Raouf Sheybani, and M. Oloomi Buygi, “How Does Pricing of Day-ahead Electricity Market Affect Put Option Pricing?,” Iranian Journal of Electrical & Electronic Engineering, vol. 12, no. 3, pp. 230-239, Sept. 2016. [19]   Q. Bian and Z. Lu, “The valuation of optional financial contract in electricity market,” in Sustainable Power Generation and Supply (SUPERGEN 2012), International Conference on, Sept. 2012, pp. 1– 6. [20]   M. Davison, C. L. Anderson, B. Marcus, and K. Anderson, “Development of a hybrid model for electrical power spot prices,” IEEE Transactions on Power Systems, vol. 17, no. 2, pp. 257–264, May 2002. [21]   M. O. Buygi, H. Zareipour, and W. D. Rosehart, “Impacts of large-scale integration of intermittent resources on electricity markets: A supply function equilibrium approach,” Systems Journal, IEEE, vol. 6, no. 2, pp. 220–232, June 2012. [22]   P. D. Klemperer and M. A. Meyer, “Supply function equilibria in oligopoly under uncertainty,” Econometrica, vol. 57, no. 6, pp. 1243– 1277, Nov. 1989. [23]   R. Baldick, “Electricity market equilibrium models: the effect of parametrization,” Power Systems, IEEE Transactions on, vol. 17, no. 4, pp. 1170–1176, Nov. 2002. [24]   Y. Chen and B. F. Hobbs, “An oligopolistic power market model with tradable nox permits,” Power Systems, IEEE Transactions on, vol. 20, no. 1, pp. 119–129, Feb. 2005. [25]   Rana, U.S., and Ahmad, A. “Numerical solution of pricing of european put option with stochastic volatility”, International Journal of Engineering Transaction A: Basics, Vol. 24, No. 2, (2011), 189-202. [26]   P. Couchman, B. Kouvaritakis, M. Cannon, and F. Prashad, “Gaming strategy for electric power with random demand,” IEEE Transactions on Power Systems, vol. 20, no. 3, pp. 1283–1292, Aug. 2005. [27]   “Australian electricity option prices,” Available at: https://asxenergy.com.au/options/au-electricity/HNZ]. [28]   E. Hjalmarsson, “Does the black- scholes formula work for electricity markets? a nonparametric approach,” Working Papers in Economics, no. 101, pp. 1–65, 2003. [29]   Ronald H.W. Hoppe (2006), Chapter 4 Sequential Quadratic Programming [PDF], Retrieved from http://www.math.uh.edu/%7Erohop/fall_06/Chapter4.pdf. [30]   J. Nocedal and S. J. Wright; Numerical Optimization. Springer, New York, 2002. [31]   Hafezalkotob, A., and Makui, A. “Modeling risk of losing a customer in a two-echelon supply chain facing an integrated competitor: a game theory approach”, International Journal of Engineering Transaction A: Basics, Vol. 25, No. 1, (2012), 11-34.


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir