Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 30, No. 11 (November 2017) 1528-1537    Article in Press

PDF URL: http://www.ije.ir/Vol30/No11/B/25.pdf  
downloaded Downloaded: 0   viewed Viewed: 69

  INVESTIGATING SEISMIC RESPONSE OF SHEAR WALLS USING NONLINEAR STATIC AND INCREMENTAL DYNAMIC ANALYSES
 
S. Tariverdilo and M. Asgari
 
( Received: June 14, 2017 – Accepted: September 08, 2017 )
 
 

Abstract    Structural walls commonly used as efficient structural elements to resist lateral and vertical loads. Different performance of bearing walls in past earthquakes, motivates investigation on the adequacy of current seismic design provision for these walls. This study considers seismic performance of model walls of bearing wall system and building frame system designed as ordinary and special shear walls. Performance of the model walls are evaluated through static pushover and incremental dynamic analyses. Results show the superior performance of bearing wall system, which shows justification for possible increase in the response modification factor of this sytsem in the design codes.

 

Keywords    Bearing wall system, Building frame system, Special shear wall, Ordinary shear wall, Incremental dynamic analysis

 

چکیده    دیوارهای سازه­ای معمولا به عنوان اجزایی کارا برای بارهای جانبی و قائم مورد استفاده قرار می­گیرند. عملکردهای متفاوت دیوارهای باربر در زلزله­های گذشته، لزوم بررسی ایمنی دیوارهای طراحی شده براساس ضوابط آیین­نامه­های طراحی را در پی دارد. در این مطالعه عملکرد دیوارهای سیستم دیوار باربر و سیستم قاب ساختمانی طراحی شده براساس ضوابط شکل­پذیری ویژه و معمولی مورد بررسی قرار گرفته است. عملکرد دیوارهای مورد مطالعه با استفاده از آنالیز استاتیکی و دینامیکی افزاینده مورد بررسی قرار گرفته است. نتایج گویای عملکرد بهتر سیستم دیوار باربر است که با ضرایب رفتار پائین­تر این سیستم در آئین­نامه­های طراحی همخوانی ندارد.

References    1. ASCE/SEI 7-10, 2010, Minimum design loads for buildings and other structures, American Society of Civil Engineers, Reston, Virginia. 2. Wallace, J., Moehle, J., 1992, Ductility and detailing requirements of bearing walls, Journal of Structural Engineering, ASCE. 3. Lagosi, R., Kupfer, M., Lindenberg, J., Bonelli, P., Saragoni, R., Guendelman, T., Massone, L., 2012, Seismic Performance of High-rise Concrete Buildings in Chile, International Journal of High Rise Buildings, Vol.1, No.3, 181-194. 4. Paulay, T., 2003, Displacement capacity of dual reinforced concrete building system, Pacific Conference on Earthquake Engineering. 5. Dashti, F., Dhakal, R., 2013, Comparative performance of RC shear walls designed by different standards, Advances in Structural Engineering and Mechanics (ASEM13). 6. NZS3101, 2006, NZS 3101:2006 Concrete Structures Standard. Part 1: The Design of Concrete Structures. 7. American Concrete Institute, 2011, Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary (ACI318R-11), Farmington Hills, Michigan. 8. CEN, 2004, Eurocode 8: Design of structures for earthquake resistance, Part 1, 1998-1991. 9. Islam, M.S., Saito, T., 2015, Displacement based evaluation for confinement requirement of boundary elements of shear wall and retrofit design using carbon fiber sheet (CFS), Bulletin of IISEE. 10. Sedgh, R.E., Dhakal, R., Carr, A.J., 2015, State of the Art: Challenges in analytical modelling of multi-storey shear wall buildings, NZSEE Conference. 11. Seo, J., Hu, J.H., Davaajamts, B., 2015, Seismic Performance Evaluation of Multistory Reinforced Concrete Moment Resisting Frame Structure with Shear Walls, Sustainability. 12. FEMA 356, 2000, Prestandard and Commentary for the Seismic Rehabilitation of Buildings; Federal Emergency Management Agency: Washington, DC, USA, 2000. 13. An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in the Los Angeles Region. Available online: http://www.tallbuildings.org/PDFFiles/2014-LATBSDC-CRITERIA.pdf (accessed on 14 January 2015). 14. Creagh, A., Acevedo, C., Moehle, J., Hassan, W., Tanyeri, A.C., 2015, Seismic performance of concrete special boundary element, Internal report, University of California Berkeley. 15. Parral, P.F., Moehle, J.P., 2014, Lateral buckling in reinforced concrete walls, Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering, Anchorage, Alaska. 16. Wallace, J., 2012, Behavior, design, and modeling of structural walls and coupling beams – Lessons from recent laboratory tests and earthquakes, International Journal of Concrete Structures and Materials, Vol.6, No.1, 3-18. 17. Hagen, G.R., 2012, Performance based analysis of a reinforced concrete shear wall building, Master of science thesis, Faculty of California Polytechnic State University, San Luis Obispo. 18. ASCE 41-06, 2007, American Society of Civil Engineers. ASCE 41-06 Seismic Rehabilitation of Buildings. Reston, Virginia. 19. Gogus, A., Wallace, J., 2015, Seismic safety evaluation of reinforced concrete walls through FEMA P695 methodology, Journal of Structural Engineering. 20. FEMA P695, 2009, Quantification of building seismic performance factors, Washington, DC. 21. NIST GCR 14-917-25, 2014, Recommendations for seismic design of reinforced concrete wall buildings based on studies of the 2010 Maule, Chile earthquake, U.S. Department of Commerce, National Institute of Standards and Technology, Engineering Laboratory, Gaithersburg. 22. OpenSees, 2013, Open system for earthquake engineering simulation, OpenSees, Pacific Earthquake Engineering Research Center, Berkeley, California, http://opensees.berkeley.edu. 23. Thomsen, J.H., Wallace, J., 2003, Displacement-Based Design of Slender Reinforced Concrete Structural Walls—Experimental Verification, Journal of Structural Engineering, ASCE. 


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir