Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 30, No. 12 (December 2017) 1467-1476    Article in Press

PDF URL: http://www.ije.ir/Vol30/No12/C/6.pdf  
downloaded Downloaded: 0   viewed Viewed: 73

  A LOW COST NUMERICAL SIMULATION OF A SUPERSONIC WIND-TUNNEL DESIGN
 
M. Dehghan Manshadi and H. Bagheri Esfe.
 
( Received: July 17, 2017 – Accepted: September 08, 2017 )
 
 

Abstract    In the present paper a supersonic wind tunnel is designed to maintain a flow with Mach number of 3 in a 30cm×30cm test section. An in-house CFD code is developed using the Roe scheme (1981) to simulate the flow field and detect the location of normal shock in the supersonic wind tunnel. A parallel algorithm is implemented using OpenMp to reduce the computational time. Also an appropriate equation is derived to predict the optimum number of cores for running the program with different grid sizes. In the design process of the wind tunnel, firstly geometry of the nozzle is specified by the method of characteristics. The flow in the nozzle and test section is simulated in the next step. Then design parameters of the diffuser (convergence and divergence angles, area of the throat, and ratio of the exit area to the throat area) are determined by a trial and error method. Finally an appropriate geometry is selected for the diffuser which satisfies all necessary criteria.

 

Keywords    Geometrical Design, OpenMp, Recovery Factor, Roe Scheme, Supersonic Wind-tunnel

 

چکیده    در این پژوهش یک تونل باد مافوق صوت برای تولید جریان با عدد ماخ 3 با یک مقطع تست cm30cm×30 طراحی می­شود. یک کد CFD با استفاده از روش رو (1981) برای شبیه سازی میدان جریان و تشخیص موقعیت شوک عمودی در تونل باد مافوق صوت توسعه داده شده است. یک الگوریتم موازی با استفاده از روش OpenMp برای کاهش زمان محاسباتی بکار برده شده است. همچنین یک معادله برای پیش بینی تعداد مناسب هسته­های کامپیوتر در اجرای برنامه با اندازه­های مختلف شبکه بدست آمده است. در فرایند طراحی تونل باد، ابتدا هندسه نازل با روش مشخصه­ها تعیین می­شود. در مرحله بعدی جریان در نازل و محل تست شبیه سازی می­گردد. سپس پارامترهای طراحی دیفیوزر (زاویه­های همگرایی و واگرایی، مساحت گلوگاه و نسبت مساحت خروجی به مساحت گلوگاه) به وسیله روش سعی و خطا تعیین می­شود. در نهایت یک هندسه مناسب برای دیفیوزر انتخاب شده که تمامی معیارهای لازم را ارضاء کند.

References    Dodson, MG., “An historical and applied aerodynamic study of the Wright brothers’ wind tunnel test program and application to successful manned flight”, US Naval Academy Technical Report (USNA) 334, (2005).Michel, R.,  Quemard, C. and Mignosi, A., “Study of the problems involved in the design and development of an injector-driven pressurized transonic wind tunnel”, in Fluid Dynamics Panel Symposium, London, England, (1975).Thibodeaux, J. and Balakrishna, S., “Development and validation of a hybrid-computer simulator for a transonic cryogenic wind tunnel”, NASA Technical Paper1695, (1980).Blair,  M. F., Bailey, D. A. and Schlinker, R. H., “Development of a large-scale wind tunnel for the simulation of turbomachinery airfoil boundary layers”, Journal of engineering for power, Vol. 103, (1981), 679-687. Szuch, J. R., Cole, G. L., Seidel, R. C. and Arpasi, D. J., “Development and application of dynamic simulations of a subsonic wind tunnel”, NASA Lewis Research Cent, Cleveland, OH, USA, (1986).Shono, H., Ojima, A., Kamemoto, K., “Development of a virtual two-dimensional wind tunnel using a vortex element method”, In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference, American Society of Mechanical Engineers, Honolulu, (2003).Lacey,  J., “A new development in automotive wind tunnels”, Auto Technology, Vol. 5, No. 5, (2005), 50-52.Potts, J. R., Lunnon, I., Crowther, W. J., Johnson, G. A., Hucker, M. J. and Warsop, C., “Development of a transonic wind tunnel test bed for MEMS flow control actuators and sensors”, in 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, (2009)Villafane, L., Paniagua, G., Kaya, M., Bajusz, D. and Hiernaux, S., “Development of a transonic wind tunnel to investigate engine bypass flow heat exchangers”, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 225, No. 8, (2011), 902-914. Kouhi, M., Dehghan Manshadi, M. and Oñate, E., “Geometry optimization of the diffuser for the supersonic wind tunnel using genetic algorithm and adaptive mesh refinement technique”, Aerospace Science and Technology, Vol. 36, (2014), 64–74. Rajan, S., “A parallel algorithm for high subsonic compressible flow over a circular cylinder”, Journal of Computational Physics, Vol. 12, No. 4, (1973), 534–552. Barth, J., Chan, F. and Tang, W., “A parallel non-overlapping domain-decomposition algorithm for compressible fluid flow problems on triangulated domains”, Contemporary Mathematics, Vol. 218, (1988), 23-41. Aliabadi, S., “High performance computing of compressible flows”, High-Performance Computing in Asia-Pacific Region, 2005. Proceedings. Eighth International Conference on. IEEE, (2005).Koobus, B., Camarri, S., Salvetti, M. V., Wornom, S. and Dervieux, A., “Parallel simulation of three-dimensional complex flows: Application to two-phase compressible flows and turbulent wakes”, Advances in Engineering Software, Vol. 38, No. 5, (2007), 328-337. He, B., Feng, W. B., Zhang, W. and Cheng, Y. M., “Parallel simulation of compressible fluid dynamics using lattice boltzmann method”, in The First International Symposium on Optimization and Systems Biology, Beijing, China, (2007).Li, D. B., Xu, Q. S., Shen, Y. L., Wen, Z. Y. and Liu, Y. M., “Parallel algorithms for compressible turbulent flow simulation using direct numerical method”, Advanced Materials Research, Vol. 516, (2012), 980-991. Xu, X., Wang, X. and Tan, J., “MPI+OpenMP hybrid parallel algorithm performance research on two-dimensional compressible flow field simulation”, Applied Mechanics and Materials, Vol. 275, (2013), 2585-2588. Kermani, M. J. and Plett, E. G., “Roe scheme in generalized coordinates: Part I- formulations”, AIAA Paper 2001-0086, (2001).Anderson, J.D., “Computational Fluid Dynamics; The Basics with Applications”, McGraw-Hill, (1995).Van Leer, B., “Towards the ultimate conservation difference scheme, V, A second order sequel to Godunov’s method”, Journal of Computational Physics, Vol. 32, No. 1, (1979), 101–136. Kermani, M. J. and Plett, E. G., “Modified entropy correction formula for the Roe scheme”, AIAA Paper 2001-0083, (2001). Kermani, M. J., “Development and assessment of upwind schemes with application to inviscid and viscous flows on structured meshes”, Ph.D. Thesis, Department of Mechanical & Aerospace Engineering, Carleton University, Canada, (2001).  Chandra, R., Dagum, L., Kohr, D., “Parallel Programming in OpenMP”, Morgan kaufmann, (2001). 24.  Chapman, B., Jost, G., Van der Pas, R., “Using OpenMP: Portable shared memory parallel programming”, The MIT Press Cambridge, Massachusetts London, England, (2008). John, J., “Gas Dynamics”, Published by Allyn and Bacon in Boston, (1969).


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir