IJE TRANSACTIONS A: Basics Vol. 31, No. 1 (January 2018) 69-76    Article in Press

PDF URL: http://www.ije.ir/Vol31/No1/A/10.pdf  
downloaded Downloaded: 0   viewed Viewed: 59

M. Oraon and V. Sharma
( Received: September 14, 2017 – Accepted: November 30, 2017 )

Abstract    In this study, artificial neural network was used to predict the minimum force required to single point incremental forming of thin sheets of Aluminium AA3003-O and calamine brass Cu67Zn33 alloy. Accordingly, the parameters for processing, i.e., step depth, feed rate of tool, spindle speed, wall angle, thickness of metal sheets and type of material were selected as input and the minimum vertical force component was selected as model output. To train the model, a Multi layer perceptron neural network structure and feed-forward back propagation algorithm has been employed. After testing many different ANN architectures, an optimal structure of the model i.e. 6-14-1 was obtained. The results, with a correlation relation between experiments to predicted force,-1.259 mean absolute error, show a very good agreement.


Keywords    SPIF; Input variables; ANOVA; Vertical force component


چکیده    در این مطالعه، شبکه عصبی مصنوعی برای پیش بینی حداقل نیروی مورد نیاز برای تک نقطه تشکیل افزایشی از ورق های نازک از آلومینیوم AA3003-O و کالامین برنج آلیاژ Cu67Zn33 استفاده شد. بر این اساس، پارامترهای برای پردازش، یعنی عمق گام، میزان تغذیه از ابزار، سرعت اسپیندل، زاویه دیوار، ضخامت ورق فلز و نوع مواد به عنوان ورودی انتخاب شدند و حداقل جزء نیروی عمودی به عنوان خروجی مدل انتخاب شد. آموزش مدل، یک لایه پرسپترون چند ساختار شبکه عصبی و الگوریتم انتشار غذا به جلو استفاده شده است. پس از آزمایش بسیاری از معماری های مختلف شبکه عصبی مصنوعی، یک ساختار بهینه مدل یعنی 6-14-1 به دست آمد. نتایج، با یک رابطه همبستگی بین آزمایش به نیروی پیش بینی شده، -1.259 میانگین خطای مطلق، توافق بسیار خوبی را نشان می دهد

References    [1]   Kroplin, B., Luckey, E. “Metal forming process simulation in industry” in: International Conference and Workshop, Baden-Baden, Germany, 28-30, 1994. [2]   Lee, J. K., Kinzel, G. L., Wagoner, R., Numerical simulation of 3D sheet metal forming processes, verification of simulations with experiments”, in 3rd International Conference on NUMISHEET 96, the Ohio State University, Dearborn, (1994). [3]   Guo, Y. Q., Batoz, J. L., Naceur, H., Bouabdallah, S., Mercier, F., Barlet, O., “Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach”, Comput. Struct., Vol. 78, (2000), 133–148. [4]   Arab, N., Nazaryan, E., “analytical modeling of axi-symmetric Sheet metal forming”, International Journal of Engineering-Transactions B:Applications, Vol. 24, No. 1, (2015), 55-63. [5]   Pohlak, M., Majak, J., and Kuttner, R., “Manufacturability and limitations in incremental sheet forming”, Proc. Estonian Acad. Sci. Engg, Vol. 13-2, (2007), 129-139. [6]   Oraon, M., and Sharma, V., “Sheet Metal Micro Forming: Future ResearchPotentials”, Int. J. on Production and Industrial Engineering, Vol. 1, (2010), 31-35. [7]   Jeswiet, J., Micari, F., Hirt, G., Bramley, A., Duflou, J. and Allwood, J., “Asymmetric single point incremental forming of sheet metal”, CIRP Annals – Manufacturing Technology, Vol. 54, No. 2, (2005), 88-114. [8]   Shim, M. S., and park, J. J., “The formability of aluminum sheet in incremental forming”, Journal of Materials Processing Technology, Vol. 113, (2001), 654-658. [9]   Kim, Y. H., and Park, J. J., “Effect of process parameters on formability in incremental forming of sheet metal”, Journal of Materials Processing Technology, Vol. 130-131, (2002), 42-46. [10]              Ceretti, E., Giardini, C., Attanasio A., “Experimental and simulative results in sheet incremental Forming on CNC machines”, Journal of Materials Processing Technology, Vol. 152, (2004), 176–184 [11]    Kopac, J., and Kampus. Z,, “Incremental sheet metal forming on CNC milling machine tool”, Journal. Mater. Process. Technology, Vol. 162-163 (2005), 622-628. [12]    Obikawa, T., Satou, S., and Hakutani, T., “Dieless incrementalmicro-forming of miniature shell objects of aluminum foils”, International Journal of Machine Tools & Manufacture, (2009), 906-915. [13]    Oraon, M., and Sharma, V., “Effectiveness of Tool profile in sheet metal incremental forming”, in 5th International Scientific and Expert Conference on the International TEAM Society, Slovakia 2013, 55, (2013). [14]    Cerro, I., Maidagan, E., Arana, J., Rivero, A., Rodriguez, P.P., “Theoretical and experimental analysis of the dieless incremental sheet forming process”, Journal of Materials Processing Technology, Vol. 177, (2006), 404-408. [15]    Hussain, G., Gao, L., and Dar, N. U., “An experimental study on some formability evaluation methods in negative incremental forming”, Journal of Materials Processing Technology,Vol. 186, (2007), 45-53. [16]    Hussain, G., Gao, L., and Zhang, Z. Y.,  “Formability evaluation of a pure titanium sheet in the cold incremental forming process”, International Journal of Advanced manufacturing Technology, Vol.37, (2007),  920-926. [17]    Hussain, G., Gao, L., Hayat, N., and Dar, N. U., “The formability of annealed and pre-aged AA-2024 sheets in single-point incremental forming”, International Journal of Advanced Manufacturing Technology, Vol. 46, (2015), 543-549. [18]    Jeswiet, J., Duflou, J. R., and Szekeres, A., “Forces in single point and two point increnmental forming”, Adv Mat Res, (2005), 449-456. [19]    Duflou, J., Tunckol, Y., Szekeres, A., and Vanherck, P., “Experimetal study on force measurement for single point incremental forming”, Journal of Materials Processing Technology, Vol. 189, (2007), 62-72. [20]    Szekeres, A., Ham, M., and Jeswiet, J. “Sheet metal force measurement in pyramid shaped parts with a spindle mounted force sensor”, Key Eng Mater, Vol. 344, (2007), 551-558. [21]    Petek, A., Kuzman, K., and Kopac, J., “Deformations and forces analysis of single point incremental sheet metal forming”, Archives of material science and engg., Vol. 35, (2009),  107-116. [22]    Ambrogio, G., Duflou, J. R., Filice, L., and Aerens, R., “Some Considerations on force ternds in incremental forming of different materials”, in 10th ESAFORM conference on material forming, AIP conference 2007, 193, (2010). [23]    Bouffioux, C., Eyckens, P., Henrard, C., Aerens, R., Van, A. and Sol, H., “Identification of material parameters to predict Single Point Incremental Forming forces”, Int J Mater Form Suppl., (2008),  1147-1150. [24]    Petek, A., Kuzman, K., and Kopac, J., “Deformations and forces analysis of single point incremental sheet metal forming”, Archives of material science and engg., Vol. 35, (2009),  107-116. [25]    Henrard, C., Bouffioux, C., Eyckens, P., Sol, H., Duflou, J. R. and Houtte, P. V., “Forming forces in single point incremental forming: prediction by finite element simulations, validation and sensitivity”, Computer Mech,Vol. 57, (2011), 573-590. [26]    Bahoul, R., Arfa, H., and Belhadj, H. S., “A study on optimal design of process parameters in single point incremental forming of sheet metal by combining Box–Behnken design of experiments, response surface methods and genetic algorithms”, International journal of advanced manufacturing technology, Vol. 174, (2014), 163-185. [27]    Kecman, V., “Learning and soft computing, MIT Press, (2001). [28]    Neshat, N., “An approach of artificial neural networks modeling based on fuzzy regression for forecasting purposes”, International Journal of Engineering-Transactions B:Applications, Vol. 28, No. 11, (2015), 1259-1265. [29]    Kalidass, S. and Ravikumar, T. M., “Cutting force prediction in end milling process of aisi 304 steel using solid carbide tools”, International Journal of Engineering-Transactions A: Basics, Vol. 28, No. 7, (2015), 1074-1081. [30]    Ambrogio, G., Filice, L., Guerriero, F., Guido, R., and Umbrello. D., “Prediction of incremental sheet forming process performance by using a neural network approach”, Int J Adv Manuf Technol, 2010. [31]    Vahdati, M., Sedighi, M., and Mahdavinejad, R., “Prediction of applied forces in incremental sheet metal forming (ISMF) process by means of artificial neural network (ANN)”, Journal of Automotive and Applied Mechanics, Vol.2, No. 2, (2014). [32]  Varthini, R., Gandhinathan, R., Pandivelan, C., and Jeevanantham, A. K., “Modelling and optimization of process parameters of The single point incremental forming of aluminium 5052 alloy sheet using genetic algorithm-back Propagation neural network”, International Journal of Mechanical And Production Engineering, Vol. 2, No. 5, (2014), 55-62.

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir