Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 31, No. 1 (January 2018) 77-89    Article in Press

PDF URL: http://www.ije.ir/Vol31/No1/A/11.pdf  
downloaded Downloaded: 0   viewed Viewed: 68

  COMPARISON OF THE HYPERBOLIC RANGE OF TWO-FLUID MODELS ON TWO-PHASE GAS -LIQUID FLOWS
 
H. Zolfaghary Azizi, M. Naghashzadegan and V. Shokri
 
( Received: August 28, 2017 – Accepted: October 29, 2017 )
 
 

Abstract    In this paper, a numerical study is conducted in order to compare on the hyperbolic range of equations of isotherm two-fluid model governing on the two-phase flow inside of pipe using conservative Shock capturing method. Differential equations of the two-fluid model are presented in two forms (i.e. form I and form II). In the forms I and II, pressure correction terms are hydrodynamic and hydrostatic, respectively. In order to compare, the hyperbolic range of equations of two-fluid model is presented in two form. Two case ( i.e. water Faucet Case and water-air separation case) in the vertical configuration and two other cases (i.e. Large Relative Velocity Shock Tube Case and Toumi’s Shock Tube Case) in the horizontal configuration are used. The form I of two-fluid model had broader range of well-posing than form II of two-fluid model. Results on water-Air separation case show that range of well-posing of the form II of two-fluid model can play stabilizer role of hydrostatic pressure correction term .

 

Keywords    two-phase flow, two-fluid model, numerical simulation, hyperbolic analysis

 

چکیده    در این مقاله، یک مطالعه عددی برای مقایسه محدوده هیپربولیکی معادلات مدل دو سیالی دما ثابت حاکم بر جریان های دوفازی داخل لوله انجام شده است. با استفاده از متد تسخیر شاک پایستار مدلسازی عددی انجام شده است. معادلات دیفرانسیل مدل دو سیالی بر اساس نوع ترم تصحیح فشار در دو فرم ارائه شده است. در فرم I از ترم تصحیح فشار هیدرودینامیک و در فرم II از ترم تصحیح فشار هیدرواستاتیک استفاده شده است. برای مقایسه محدوده هیپربولیکی معادلات مدل دو سیالی در دو فرم ارائه شده، از دو مسئله نمونه شیر آب و جدایش آب و هوا در هندسه قائم و دومسئله نمونه لوله شاک سرعت نسبی بزرگ و لوله شاک تامی استفاده شده است. مدل دوسیالی فرم I دارای محدوده خوش رفتاری گسترده تری نسبت به مدل دو سیالی فرم II می باشد. نتایج در مسئله نمونه جدایش آب و هوا نشان داده است محدوده خوش رفتاری مدل دو سیالی فرم II می تواند نقش پایدار کننده ترم تصحیح فشار هیدرواستاتیک را ایفا کند.

References      1.             Issa, R. and M. Kempf, Simulation of slug flow in horizontal and nearly horizontal pipes with the two-fluid model. International journal of multiphase flow, 2003. 29(1): p. 69-95. 2.             Omgba-Essama, C., Numerical modelling of transient gas-liquid flows (application to stratified & slug flow regimes), 2004. 3.             Ishii, M., Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris (1975). There is no corresponding record for this reference. 4.             Ishii, M. and K. Mishima, Two-fluid model and hydrodynamic constitutive relations. Nuclear Engineering and design, 1984. 82(2): p. 107-126. 5.             Spalding, D., Numerical computation of multi-phase fluid flow and heat transfer. Recent advances in numerical methods in fluids, 1980. 1: p. 139-167. 6.             Ansari, M. and V. Shokri, New algorithm for the numerical simulation of two-phase stratified gas–liquid flow and its application for analyzing the Kelvin–Helmholtz instability criterion with respect to wavelength effect. Nuclear Engineering and Design, 2007. 237(24): p. 2302-2310. 7.             Toro, E.F., Riemann solvers and numerical methods for fluid dynamics: a practical introduction. 2013: Springer Science & Business Media. 8.             Evje, S. and T. Flåtten, Hybrid flux-splitting schemes for a common two-fluid model. Journal of Computational Physics, 2003. 192(1): p. 175-210. 9.             Munkejord, S.T., S. Evje, and T. FlÅtten, A MUSTA scheme for a nonconservative two-fluid model. SIAM Journal on Scientific Computing, 2009. 31(4): p. 2587-2622. 10.           Shekari, Y. and E. Hajidavalloo, Application of Osher and PRICE-C schemes to solve compressible isothermal two-fluid models of two-phase flow. Computers & Fluids, 2013. 86: p. 363-379. 11.           Wang, Z., J. Gong, and C. Wu, Numerical Simulation of One-Dimensional Two-Phase Flow Using a Pressure-Based Algorithm. Numerical Heat Transfer, Part A: Applications, 2015. 68(4): p. 369-387. 12.           Bonizzi, M. and R. Issa, A model for simulating gas bubble entrainment in two-phase horizontal slug flow. International journal of multiphase flow, 2003. 29(11): p. 1685-1717. 13.           Bonizzi, M. and R. Issa, On the simulation of three-phase slug flow in nearly horizontal pipes using the multi-fluid model. International journal of multiphase flow, 2003. 29(11): p. 1719-1747. 14.           Carneiro, J., et al., Statistical characterization of two-phase slug flow in a horizontal pipe. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2011. 33(SPE1): p. 251-258. 15.           Hanyang, G. and G. Liejin, Stability of stratified flow and slugging in horizontal gas-liquid flow*. Progress in Natural Science, 2005. 15(11): p. 1026-1034. 16.           Liao, J., R. Mei, and J.F. Klausner, A study on the numerical stability of the two-fluid model near ill-posedness. International Journal of Multiphase Flow, 2008. 34(11): p. 1067-1087. 17.           Figueiredo, A.B., et al. Accuracy Study of the Flux-Corrected Transport Numerical Method Applied to Transient Two-Phase Flow Simulations in Gas Pipelines. in 2012 9th International Pipeline Conference. 2012. American Society of Mechanical Engineers. 18.           Bueno, D.E., et al. Numerical Simulation of Stratified Two-Phase Flow in a Nearly Horizontal Gas-Liquid Pipeline With a Leak. in 2014 10th International Pipeline Conference. 2014. American Society of Mechanical Engineers. 19.           Ransom, V.H. and D.L. Hicks, Hyperbolic two-pressure models for two-phase flow. Journal of Computational Physics, 1984. 53(1): p. 124-151. 20.           Evje, S. and T. Flåtten, Hybrid central-upwind schemes for numerical resolution of two-phase flows. ESAIM: Mathematical Modelling and Numerical Analysis, 2005. 39(2): p. 253-273. 21.           Cortes, J., A. Debussche, and I. Toumi, A density perturbation method to study the eigenstructure of two-phase flow equation systems. Journal of Computational Physics, 1998. 147(2): p. 463-484. 22.           Toumi, I., An upwind numerical method for two-fluid two-phase flow models. Nuclear Science and Engineering, 1996. 123(2): p. 147-168.


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir