Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 31, No. 2 (February 2018) 188-195    Article in Press

PDF URL: http://www.ije.ir/Vol31/No2/B/1.pdf  
downloaded Downloaded: 0   viewed Viewed: 248

  HIGHLY SENSITIVE AMPEROMETRIC SENSOR BASED ON GOLD NANOPARTICLES POLYANILINE ELECTROCHEMICALLY REDUCED GRAPHENE OXIDE NANOCOMPOSITE FOR DETECTION OF NITRIC OXIDE
 
G. Najafpour
 
( Received: December 11, 2017 – Accepted: January 04, 2018 )
 
 

Abstract    A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning Electron Microscopy (FESEM) and UV-vis. Electrochemical behavior of modified electrode was analyzed by cyclic voltammetry (CV) and chronoamperometry (CA) techniques. CVs of AuNPs-PANI-ErGO/Au, PANI-ErGO/Au and ErGO/Au electrodes showed that conductivity of AuNPs-PANI-ErGO/Au was higher than others. Nafion was used to improve selectivity of modified electrode. Nafion/AuNPs-PANI-ErGO/Au electrode represented favorable electrochemical and electrocatalytic behavior towards NO oxidation. The resultant electrode exhibited a high sensivity of 0.113 μA/μM over a wide linear range from 0.8 × 10−6 to 86 × 10−6 M with a low detection limit of 2.5 × 10−7 M (S/N=3). In addition, the sensor had excellent stability, as well as reproducibility and selectivity, which makes it possible to detect NO quickly and accurately.

 

Keywords    Nitric oxide sensor, Reduced graphene oxide, Gold nanoparticle, Polyaniline, Cyclic voltammetry

 

چکیده    در این مطالعه، یک سنسور الکتروشیمیایی برای شناسایی حساس و انتخاب­پذیر نیتریک اکسید (NO) بر مبنای نانوکامپوزیت گرافن اکسید کاهش یافته الکتروشیمیایی (ErGO)- پلی آنیلین (PANI)- نانوذرات طلا (AuNPs) ساخته شد. این نانوکامپوزیت از طریق الکترودیپوزیشن گام به گام روی یک الکترود طلا (Au) پوشش داده شد تا الکترود AuNPs-PANI-ErGO/Au تشکیل شود. نانوکامپوزیت AuNPs-PANI-rGO به وسیله تکنیک­های UV-vis و FESEM تعیین مشخصه شد. رفتار الکتروشیمیایی الکترود اصلاح شده به وسیله ولتامتری چرخه­ای (CV) و کرونوآمپرومتری (CA) ارزیابی شد. نمودارهای ولتاگرام الکترودهای AuNPs-PANI-ErGO/Au, PANI-ErGO/Au and ErGO/Au نشان داد که هدایت AuNPs-PANI-ErGO/Au از دو مورد دیگر بیشتر بود. از نفیون برای بهبود انتخاب­پذیری الکترود اصلاح شده استفاده شد. الکترود Nafion/AuNPs-PANI-ErGO/Au در مورد اکسیداسیون NO رفتار الکتروکاتالیتیکی و الکتروشیمیایی مطلوبی از خود نشان داد. در شرایط بهینه، الکترود ساخته شده حساسیت بالای μA/μM 113/0 در محدوده خطی وسیع μM 86-8/0 با حد تشخیص پایین μM 25/0 را از خود نشان داد. علاوه بر این، این سنسور پایداری، تکرارپذیری و انتخاب­پذیری بالایی داشت که باعث می­شود بتوان از آن در تشخیص سریع و دقیق NO استفاده کرد.

References    1.             Moncada, S., Palmer, R.M.J. and Higgs, E.A., "Nitric oxide: Physiology, pathophysiology and pharmacology", Pharmacol Rev,  Vol. 43, No. 2, (1991), 109–142. 2.             Pashai, E., Najafpour, G.D., Jahanshahi, M., Yazdian, F. and Rahimnejad, M., "An electrochemical nitric oxide biosensor based on immobilized cytochrome c on a chitosan-gold nanocomposite modified gold electrode", Int J Biol Macromol,  Vol. 108, No., (2017), 250-258. 3.             Pluth, M.D., Tomat, E. and Lippard, S.J., "Biochemistry of mobile zinc and nitric oxide revealed by fluorescent sensors", Annu Rev Biochem,  Vol. 80, No. 1, (2011), 333-355. 4.             Kavya, R., Saluja, R., Singh, S. and Dikshit, M., "Nitric oxide synthase regulation and diversity: Implications in parkinson's disease", Nitric Oxide-Biol Chem,  Vol. 15, No. 4, (2006), 280-294. 5.             Li, C., Zang, J., Zhan, D., Chen, W., Sun, C., Teo, A., Chua, Y., Lee, V. and Moochhala, S., "Electrochemical detection of nitric oxide on a swcnt/rtil composite gel microelectrode", Electroanal,  Vol. 18, No. 7, (2006), 713– 718. 6.             Wink, D. and Mitchell, J., "Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide", Free Radical Bio Med,  Vol. 25, No. 4-5, (1998), 434–456. 7.             Taha, Z., " Nitric oxide measurements in biological samples", Talanta,  Vol. 61, No. 1, (2003), 3–10. 8.             Shibuki, K., "An electrochemical microprobe for detecting nitric oxide release in brain tissue", Neurosci Res,  Vol. 9, No. 1, (1990), 69-76. 9.             Haruyama, T., Shiino, S., Yanagida, Y., Kobatake, E. and Aizawa, M., "Two types of electrochemical nitric oxide (no) sensing systems with heat-denatured cyt c and radical scavenger ptio", Biosens Bioelectron,  Vol. 13, No. 7-8, (1998), 763-769. 10.           Fan, C., Chen, X., Li, G., Zhu, J., Zhu, D. and Scheer, H., "Direct electrochemical characterization of the interaction between haemoglobin and nitric oxide", Phys Chem Chem Phys,  Vol. 2, No. 19, (2000), 4409-4413. 11.           Brovkovych, V., Stolarczyk, E., Oman, J., Tomboulian, P. and Malinski, T., "Direct electrochemical measurement of nitric oxide in vascular endothelium", J Pharm Biomed Anal,  Vol. 19, No. 1-2, (1999), 135-143. 12.           Wen, W., Chen, W., Ren, Q.-Q., Hu, X.-Y., Xiong, H.-Y., Zhang, X.-H., Wang, S.-F. and Zhao, Y.-D., "A  highly  sensitive  nitric  oxide  biosensor  based  on hemoglobin–chitosan/graphene–hexadecyltrimethylammonium bromide nanomatrix", Sensors and Actuators B Chem,  Vol. 166–167, No., (2012), 444–450. 13.           Chen, D., Feng, H.B. and Li, J.H., "Graphene oxide: Preparation, functionalization, and electrochemical applications", chem Rev,  Vol. 112, No. 11, (2012), 6027–6053. 14.           Muthoosamy, K., Bai, R.G. and Manickam, S., "Graphene and graphene oxide as a docking station for modern drug delivery system", Curr Drug Deliv,  Vol. 11, No. 6, (2014), 701–718. 15.           Bai, R.G., Muthoosamy, K., Zhou, M., Ashokkumar, M., Huang, N.M. and Manickam, S., "Sonochemical and sustainable synthesis of graphene-gold (g-au) nanocomposites for enzymeless and selective electrochemical detection of nitric oxide", Biosens  Bioelectron,  Vol. 87, No. 1, (2017), 622–629. 16.           Ting, S.L., Guo, C.X., Leong, K.C., Kim, D.-H., Li, C.M. and Chen, P., "Gold nanoparticles decorated reduced graphene oxide for detecting the presence and cellular release of nitric oxide", Electrochimica Acta,  Vol. 111, No. 1, (2013), 441-446. 17.           Casero, E., Alonso, C., Vazquez, L., Petit-Dominguez, M.D., Parra-Alfambra, A.M., Fuente, M.d.l., Merino, P., Alvarez-Garcia, S., Andres, A.d., Pariente, F. and Lorenzo, E., "Comparative response of biosensing platforms based on synthesized graphene oxide and electrochemically reduced graphene", Electroanalysis,  Vol. 25, No. 1, (2013), 154-165. 18.           Lian, W., Liu, S., Yu, J., Li, J., Cui, M., Xu, W. and Huang, J.D., "Electrochemical sensor using neomycin-imprinted film as recognition element based on chitosan-silver nanoparticles/graphene-multiwalled carbon nanotubes composites modified electrode", Biosens  Bioelectron,  Vol. 44, No. 1, (2013), 70-76. 19.           Wang, R., Yan, K., Wang, F. and Zhang, J.D., "A highly sensitive photoelectro-chemical sensor for 4-aminophenol based on cds-graphene nanocomposites and molecularly imprinted polypyrrole", Electrochim Acta,  Vol. 121 No., (2014), 102–108. 20.           Tan, X., Hu, Q., Wu, J., Li, X., Li, P., Yu, H., Li, X. and Lei, F., "Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran", Sensors and Actuators B,  Vol. 220 No., (2015), 216–221. 21.           Schoch, K.F., Byers, W.A. and Buckley, L.J., "Deposition and characterization of conducting polymer thin film on isulating substrartes", Synth Met,  Vol. 72, No. 1, (1995), 13-23. 22.           Lin, Y. and Cui, X., "Electrosynthesis, characterization, and application of novel hybrid materials based on carbon nanotube-polyaniline-nickel hexacyanoferrate nanocomposites", J Mater Chem,  Vol. 16, No. 6, (2006), 585-892. 23.           Batra, B., Lata, S., Rani, S. and Pundir, C.S., "Fabrication of a cytochrome c biosensor based on cytochrome oxidase/nio-nps/cmwcnt/pani modified au electrode", J Biomed Nanotechnol,  Vol. 9, No. 3, (2013), 409–416. 24.           Sha, R., Komori, K. and Badhulika, S., "Graphene–polyaniline composite based ultra-sensitive electrochemical sensor for non-enzymatic detection of urea", Electrochimica Acta,  Vol. 233, No., (2017), 44-51. 25.           Lata, S., Batra, B., Karwasra, N. and Pundir, C.S., "An amperometric h2o2 biosensor based on cytochrome c immobilized onto nickel oxide nanoparticles/carboxylated multiwalled carbon nanotubes/polyaniline modified gold electrode", Process Biochemistry,  Vol. 47 No. 6, (2012), 992–998. 26.           Omidi, M., Amoabediny, G., Yazdian, F. and Habibi-Rezaei, M., "Hydrogen sulfide detection using a gold nanoparticle/metalloprotein based probe", Chin Phys Lett,  Vol. 31, No. 8, (2014), DOI:https://doi.org/10.1088/0256-307X/31/8/088701 27.           Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W. and Tour, J.M., "Improved synthesis of graphene oxide", ACS NANO,  Vol. 4, No. 8, (2010), 4806-4814. 28.           Xu, X., Zheng, Q., Bai, G., Song, L., Yao, Y., Cao, X., Liu, S. and Yao, C., "Polydopamine induced in-situ growth of au nanoparticles on reduced graphene oxide as an efficient biosensing platform for ultrasensitive detection  of  bisphenol  a", Electrochimica  Acta,  Vol. 242, No., (2017), 56–65. 29.           Srivastava, S., Kumar, V., Ali, M.A., Solanki, P.R., Srivastava, A., Sumana, G., Saxena, P.S., Joshi, A.G. and Malhotra, B.D., "Electrophoretically deposited reduced graphene oxide platform for food toxin detection", Nanoscale,  Vol. 5, No. 7, (2013), 3043-3051. 30.           Li, Q., Cheng, K., Weng, W., Du, P. and Han, G., "Highly sensitive hydrogen peroxide biosensors based on tio2 nanodots/ito electrodes", J Mater Chem,  Vol. 22, No. 18, (2012), 9019-9026. 31.           Wang, Y. and Hu, S., "A novel nitric oxide biosensor based on electropolymerization poly(toluidine blue) film electrode and its application to nitric oxide released in liver homogenate", Biosens Bioelectron,  Vol. 22, No. 1, (2005), 10-17. 32.           Moussy, F. and Harrison, D.J., "Prevention of the rapid degradation of subcutaneously implanted ag/agcl reference electrodes using polymer coatings", Anal Chem,  Vol. 66, No. 5, (1994), 674–679.


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir