IJE TRANSACTIONS B: Applications Vol. 31, No. 2 (February 2018) 284-291   

PDF URL: http://www.ije.ir/Vol31/No2/B/12-2690.pdf  
downloaded Downloaded: 30   viewed Viewed: 331

M. Rasouli Khatir, H. Ghoreishy and S. A. Gholamian
( Received: October 13, 2017 – Accepted in Revised Form: December 02, 2017 )

Abstract    This paper proposes the virtual flux based direct power control for Vienna rectifier. No need for the input voltage sensors, the current regulation loop and PWM voltage modulation block along with the active and reactive power decoupling are some of the salient advantages of this method that make it suitable for controlling the conventional active rectifiers. However, due to the three-level nature of the Vienna configuration, balancing the output capacitors voltages is inevitable leading to a modified virtual flux based technique. Applying this modification, a separate switching table has been jammed into the proposed technique in order to control the capacitors voltages. Simulation results show the superiority of the virtual flux technique over the conventional Vienna control techniques from point of the mentioned advantages.


Keywords    Capacitor voltage balancing, Direct power control,Vienna rectifier,Virtual flux


چکیده    در این مقاله، کنترل مستقیم توان بر مبنای شار مجازی برای یکسوساز وی‌ینا پیشنهاد گردیده است. عدم نیاز به سنسورهای ولتاژ ورودی، عدم نیاز به حلقه تنظیم جریان و بلوک مدولاسیون پهنای پالس ولتاژ به همراه مجزا سازی توانهای اکتیو و راکتیو، برخی از مزایای برجسته این روش هستند که آن را برای کنترل یکسوسازهای اکتیو متعارف مناسب ساخته‌اند. با این حال، به دلیل ماهیت سه سطحی ساختار وی‌ینا، متعادل سازی ولتاژ خازنهای خروجی امری اجتناب ناپذیر است و منجر به پیشنهاد تکنیک تغییر یافته‌ای بر مینای شار مجازی در این مقاله گشته است. با اعمال تغییرات مذکور، یک جدول کلیدزنی مجزا جهت کنترل ولتاژ خازنها در داخل تکنیک مذکور گنجانده شده است. نتایج شبیه سازی برتری روش پیشنهادی شار مجازی را از نقطه نظر مزایای ذکر شده نسبت به سایر تکنیکهای کنترلی وی‌ینا نشان می‌دهد.


1.      Hosseini, S. and Mohammadi, H., "Neural network implementation of a three phase regulated pwm ac to dc converter with input unbalance correction", International Journal of Engineering,  Vol. 9, No. 3, (1996), 151-158.

2.      Savio, M. and Murugesan, S., "Space vector control scheme of three level zsi applied to wind energy systems", International Journal of Engineering-Transactions C: Aspects,  Vol. 25, No. 4, (2012), 275.

3.      Kolar, J.W. and Friedli, T., "The essence of three-phase pfc rectifier systems—part i", IEEE Transactions on Power Electronics,  Vol. 28, No. 1, (2013), 176-198.

4.      Carlton, D. and Dunford, W.G., "Multi-level, uni-directional ac-dc converters, a cost effective alternative to bi-directional converters", in Power Electronics Specialists Conference, 2001. PESC. 2001 IEEE 32nd Annual, IEEE. Vol. 4, (2001), 1911-1916.

5.      Teichmann, R., Malinowski, M. and Bernet, S., "Evaluation of three-level rectifiers for low-voltage utility applications", IEEE Transactions on Industrial Electronics,  Vol. 52, No. 2, (2005), 471-481.

6.      Jiang, X., Yang, J., Han, J. and Tang, T., "A survey of cascaded multi-level pwm rectifier with vienna modules for hvdc system", in Power Electronics and Application Conference and Exposition (PEAC), 2014 International, IEEE. (2014), 72-77.

7.      Dalessandro, L., Round, S.D., Drofenik, U. and Kolar, J.W., "Discontinuous space-vector modulation for three-level pwm rectifiers", IEEE Transactions on Power Electronics,  Vol. 23, No. 2, (2008), 530-542.

8.      Jiang, W.-d., Du, S.-w., Chang, L.-c., Zhang, Y. and Zhao, Q., "Hybrid pwm strategy of svpwm and vsvpwm for npc three-level voltage-source inverter", IEEE Transactions on Power Electronics,  Vol. 25, No. 10, (2010), 2607-2619.

9.      Ogasawara, S. and Akagi, H., "Analysis of variation of neutral point potential in neutral-point-clamped voltage source pwm inverters", in Industry Applications Society Annual Meeting, 1993., Conference Record of the 1993 IEEE, (1993), 965-970.

10.    Pou, J., Boroyevich, D. and Pindado, R., "Effects of imbalances and nonlinear loads on the voltage balance of a neutral-point-clamped inverter", IEEE Transactions on Power Electronics,  Vol. 20, No. 1, (2005), 123-131.

11.    He, L. and Chen, X., "A neutral point potential balance control strategy based on vector controlled vienna rectifier", in Energy Conversion Congress and Exposition (ECCE), 2010 IEEE, (2010), 2060-2065.

12.    Malinowski, M., Kazmierkowski, M.P., Hansen, S., Blaabjerg, F. and Marques, G., "Virtual-flux-based direct power control of three-phase pwm rectifiers", IEEE Transactions on Industry Applications,  Vol. 37, No. 4, (2001), 1019-1027.

13.    Idris, N.R.N. and Yatim, A.H.M., "An improved stator flux estimation in steady-state operation for direct torque control of induction machines", IEEE Transactions on Industry Applications,  Vol. 38, No. 1, (2002), 110-116.

14.    Espinoza, J.E., Espinoza, J.R. and Morán, L.A., "A systematic controller-design approach for neutral-point-clamped three-level inverters", IEEE Transactions on Industrial Electronics,  Vol. 52, No. 6, (2005), 1589-1599.

15.    Celanovic, N. and Boroyevich, D., "A comprehensive study of neutral-point voltage balancing problem in three-level neutral-point-clamped voltage source pwm inverters", IEEE Transactions on Power Electronics,  Vol. 15, No. 2, (2000), 242-249.

16.             Hang, L., Li, B., Zhang, M., Wang, Y. and Tolbert, L.M., "Equivalence of svm and carrier-based pwm in three-phase/wire/level vienna rectifier and capability of unbalanced-load control", IEEE Transactions on Industrial Electronics,  Vol. 61, No. 1, (2014), 20-28.

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir