Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 31, No. 2 (February 2018) 196-203    Article in Press

PDF URL: http://www.ije.ir/Vol31/No2/B/2.pdf  
downloaded Downloaded: 0   viewed Viewed: 173

  A SIMPLIFIED MPA-BASED METHOD FOR INCREMENTAL DYNAMIC ANALYSIS OF RC MOMENT-RESISTING FRAMES
 
M. Jalilkhani and A. R. Manafpour
 
( Received: October 06, 2017 – Accepted: November 30, 2017 )
 
 

Abstract    Incremental Dynamic Analysis (IDA) procedure is now considered as a robust tool for estimating the seismic sidesway collapse capacity of structures. However, the procedure is time-consuming and requires numerous nonlinear response-history analyses. This paper proposes a simplified Modal Pushover Analysis (MPA) procedure for IDA of RC moment-resisting frames. The proposed method uses the dynamic response of an equivalent single-degree-of-freedom (SDOF) system, characterized by a bilinear relationship between the lateral force (F) and roof-displacement (D). The F-D relationship is determined by the ‘first-mode’ pushover analysis of the structure. Four regular RC moment-resisting frames designed based on the current US building codes are selected and subjected to the proposed method. The analysis results obtained from the original MPA-based IDA method, SPO2IDA and the method proposed by Shafei et al are also presented for comparison. The performance of the proposed method is then evaluated through comparisons with the results obtained from IDAs. The results show that the proposed method is able to efficiently estimate the dynamic capacity of the example buildings for different seismic performance levels. Nonetheless like to MPA-based IDA and SPO2IDA methods less accueate results are obtained by the proposed procedure for 16% and 84% IDA fractiles in most case studies.

 

Keywords    sidesway collapse capacity, pushover analysis, IDA method, RC moment-resisting frame

 

چکیده    در حال حاضر تحلیل دینامیکی فزاینده (IDA) به عنوان ابزاری قدرتمند جهت تخمین ظرفیت فروریزش لرزه­ای جانبی سازه­ها به شمار می­آید. با این حال، روش زمان­بر بوده و نیازمند تعداد زیادی تحلیل تاریخچه زمانی غیرخطی می­باشد. این مقاله یک روش ساده­شده از تحلیل پوش­اور مودال (MPA) را به منظور تحلیل دینامیکی فزاینده قاب­های خمشی بتن­آرمه پیشنهاد می­کند. روش پیشنهادی از پاسخ دینامیکی یک سیستم تک درجه آزاد (SDOF) معادل که از یک رابطه دوخطی موجود بین نیروی جانبی (F) و جابجایی بام (D) تبعیت می­کند، استفاده می­نماید. این رابطه F-D از طریق تحلیل پوش­اور نظیر مود اول سازه به دست می­آید. چهار قاب خمشی بتن­آرمه منظم طراحی شده بر اساس آئین­نامه­های ساختمانی حال حاضر آمریکا انتخاب شده و توسط روش پیشنهادی مورد تحلیل قرار می­گیرند. نتایج تحلیلی به دست آمده از روش اولیه MPA-based IDA، SPO2IDA و روش پیشنهادی Shafei و همکارانش نیز به منظور مقایسه ارائه می­شوند. سپس عملکرد روش پیشنهادی از مقایسه نتایج به دست آمده با نتایج حاصل از تحلیل IDA مورد ارزیابی قرار می­گیرد. نتایج نشان می­دهد که روش پیشنهادی می­تواند به طور مؤثری ظرفیت دینامیکی سازه­های مثال را به ازاء سطوح عملکرد لرزه­ای مختلف تخمین بزند. با این وجود مشابه روش­های MPA-based IDA و SPO2IDA به ازاء دهک­های %16و %84 نتایج با دقت پائین­تری توسط روش پیشنهادی برای اغلب موردهای مطالعاتی به دست آمدند.

References    Vamvatsikos, D, and Cornell, CA, “Incremental dynamic analysis”, Earthquake Engineering and Structural Dynamics, Vol. 31, No. 3, (2002), 491–514.Vamvatsikos, D, and Cornell, CA, “Direct estimation of seismic demand and capacity of multi-degree-of-freedom systems through incremental dynamic analysis of single degree of freedom approximation”, ASCE Structural Engineering, Vol.131, No. 4, (2005), 589–599.Han, SW, and Chopra, AK, “Approximate incremental dynamic analysis using the modal pushover analysis procedure”, Earthquake Engineering and Structural Dynamics, Vol. 35, No. 15, (2006), 1853–1873.Han, SW, Moon, KH, and Chopra, AK, “Application of MPA to estimate probability of collapse of structures”, Earthquake Engineering and Structural Dynamics, Vol. 39, No. 11, (2010), 1259–1278.Moon, KH, Han, SW, and Lee, TS, Seok, SW. “Approximate MPA-based method for performing incremental dynamic analysis”, Nonlinear Dynamics, Vol. 67, No. 4, (2012), 2865–2888.Shafei, B, Zareian, F, and Lignos, DG, “A simplified method for collapse capacity assessment of moment-resisting frame and shear wall structural systems”, Engineering Structures, Vol. 33, No. 4, (2011), 1107–1116.FEMA 440, “Improvement of nonlinear static seismic procedures, Federal Emergency Management Agency, (2005), Washington DC, USA.Adam, C, and Jäger, C, “Simplified collapse capacity assessment of earthquake excited regular frame structures vulnerable to P-delta” Engineering Structures, Vol. 44, (2012), 159–173.Peruš, I, Klinc, R, Dolenc, M, and Dolšek, M, “A web-based methodology for the prediction of approximate IDA curves”, Earthquake Engineering and Structural Dynamics, Vol. 42, No. 1, (2012), 43–60. 10.  Hamidia, M, Filiatrault, A, and Aref, A, “Simplified seismic sidesway collapse analysis of frame buildings”, Earthquake Engineering and Structural Dynamics, Vol. 43, No. 3, (2013), 429–448. 11.  Yazdani, A, Razmyan, S, and Baharmast Hossainabadi, H, “Approximate incremental dynamic analysis using reduction of ground motion records”, International Journal of Engineering, Transaction B: Applications, Vol. 28, No. 2, (2015), 190–197. 12.  Tavakoli, HR, Kiakojouri, F, “Numerical study of progressive collapse in framed structures: A new approach for dynamic column removal”, International Journal of Engineering, Transaction A: Basics, Vol. 26, No. 7, (2013), 685–692. 13.  Chopra, AK, and Goel, RK, “A modal pushover analysis procedure for estimating seismic demands for buildings”, Earthquake Engineering and Structural Dynamics, Vol. 31, No. 3, (2002), 561–582. 14.  Ibarra, LF, Medina, RA, and Krawinkler, H, “Hysteretic models that incorporate strength and stiffness deterioration”, Earthquake Engineering and Structural Dynamics, Vol. 34, No. 12, (2005), 1489-1511. 15.  FEMA P695, Quantification of building seismic performance factors, Federal Emergency Management Agency, (2009), Washington DC, USA. 16.  Haselton, CB, and Deierlein, GG, “Assessing seismic collapse safety of modern reinforced concrete moment-frame buildings”, (2007), Report No. 156, Department of Civil Engineering, Stanford University, California, USA. 17.  Lignos, DG, Krawinkler, H, “Sidesway collapse of deteriorating structural systems under seismic excitations”, (2012), Report No. 177, Department of Civil Engineering, Stanford University, California, USA. 18.  ASCE-41, Seismic evaluation and upgrade of existing buildings, (2013), American Society of Civil Engineers, Reston, Virginia, USA. 19.  ACI Committee 318, Building code requirements for structural concrete and commentary, (2011), American Concrete Institute, Farmington Hills, Mich., 465. 20.  ASCE-7, Minimum design loads for buildings and other structures, (2010), American Society of Civil Engineers, Reston, Virginia, USA. 21.  Open System for Earthquake Engineering Simulation (OpenSees), Version 2.1.0., (2007), Pacific Earthquake Engineering Research Center, Available from: http://opensees.berkeley.edu. 22.  Ibarra, LF, and Krawinkler, H, “Global collapse of frame structures under seismic excitations”, Report No. 152, Department of Civil Engineering, Stanford University, California, USA. 23.  Goulet, CA, Haselton, CB, Mitrani-Reiser, J, Beck, JL, Deierlein, GG, Porter, KA, and Stewart, JP, “Evaluation of the seismic performance of a code-conforming reinforced-concrete frame building —from seismic hazard to collapse safety and economic losses”, Earthquake Engineering and Structural Dynamics, Vol. 36, No. 13, (2007), 1973-1997.


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir