A New Optimization Algorithm Based on Particle Swarm Optimization Genetic Algorithm and Sliding Surfaces

Document Type : Original Article

Authors

1 Department of Mechanical Engineering, Sirjan University of Technology, Sirjan, Iran

2 Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, USA

Abstract

To enhance the performance of meta-heuristic algorithms, the development of new operators and the efficient combination of various optimization techniques are valuable strategies for discovering global optimal solutions. In this research endeavor, we introduce a novel optimization algorithm called PGS (Particle Swarm Optimization-GA-Sliding Surface). PGS combines the strengths of particle swarm optimization (PSO), genetic algorithm (GA), and sliding surface (SS) to tackle both mathematical test functions and real-world optimization problems. To achieve this, we adaptively tune the weighting function and learning coefficients of the PSO algorithm using the sliding mode control's SS relation. The global best particle discovered through the PSO method serves as one of the parents in the GA's crossover operation. This new crossover operator is then probabilistically integrated with an improved particle swarm optimization algorithm, enhancing convergence speed and facilitating escape from local optima. We evaluate the proposed algorithm's performance on both uni-modal and multi-modal mathematical test functions, considering un-rotated and rotated cases, thereby testing its effectiveness and efficiency against other prominent optimization techniques. Furthermore, we successfully implement the PGS algorithm in optimizing the state feedback controller for a nonlinear quadcopter system and determining the cross-section for an inelastic compression member.

Graphical Abstract

A New Optimization Algorithm Based on Particle Swarm Optimization Genetic Algorithm and Sliding Surfaces

Keywords

Main Subjects


  1. Ghafari R, Mansouri N. An Efficient Task Scheduling Based on Seagull Optimization Algorithm for Heterogeneous Cloud Computing Platforms. International Journal of Engineering, Transactions B: Applications. 2022;35(2):433-450. https://doi.org/10.5829/IJE.2022.35.02B.20
  2. Sridhar Reddy A, Satish Chembuly VVMJ, Kesava Rao VVS. Collision-free Inverse Kinematics of Redundant Manipulator for Agricultural Applications through Optimization Techniques. International Journal of Engineering, Transactions A: Basics. 2022;35(7):1343-1354. https://doi.org/10.5829/IJE.2022.35.07A.13
  3. Mehri F, Mollaei S, Noroozinejad Farsangi E, Babaei M, Ghahramani F. Application of a Novel Optimization Algorithm in Design of Lead Rubber Bearing Isolation Systems for Seismic Rehabilitation of Building Structures. International Journal of Engineering, Transactions C: Aspects. 2023;36(3):594-603. https://doi.org/10.5829/IJE.2023.36.03C.20
  4. Kong XY, Yang GH. An Intrusion Detection Method Based on Self-Generated Coding Technology for Stealthy False Data Injection Attacks in Train-Ground Communication Systems. IEEE Transactions on Industrial Electronics. 2023;70(8):8468-8476. https://doi.org/10.1109/TIE.2022.3213899
  5. Dhanasekaran B, Siddhan S, Kaliannan J. Ant colony optimization technique tuned controller for frequency regulation of single area nuclear power generating system. Microprocessors and Microsystems. 2020; 73: 102953. https://doi.org/10.1016/j.micpro.2019.102953
  6. Cao Y, Huang L, Li Y, Jermsittiparsert K, Ahmadi-Nezamabad H, Nojavan S. Optimal scheduling of electric vehicles aggregator under market price uncertainty using robust optimization technique. International Journal of Electrical Power & Energy Systems. 2020;117:105628. https://doi.org/10.1016/j.ijepes.2019.105628
  7. Kaur J, Reddy SRN. Implementation of linux optimization technique for ARM based system on chip. Procedia Computer Science.2020;171:1780-1789. https://doi.org/10.1016/j.procs.2020.04.191
  8. Shabani A, Asgarian B, Salido M, Gharebaghi SA. Search and rescue optimization algorithm: A new optimization method for solving constrained engineering optimization problems. Expert Systems with Applications. 2020;161(15):113698. https://doi.org/10.1016/j.eswa.2020.113698
  9. Mirrashid N, Alibeiki E, Rakhtala SM. Development and Control of an upper Limb Rehabilitation Robot via Ant Colony Optimization -PID and Fuzzy-PID Controllers. International Journal of Engineering, Transactions B: Applications. 2022;35(8):1488-1493. https://doi.org/10.5829/IJE.2022.35.08B.04
  10. Vanaei P, Jalili B, Hosseinzadeh M, Jalili P. Efficiency Optimization Thermal Analysis and Power Output of a Modified Incinerator Plant Using Organic Rankine Cycle. International Journal of Engineering, Transactions A: Basics. 2023;36(7):1300-1309. https://doi.org/10.5829/IJE.2023.36.07A.11
  11. Holland J. Adaptation in Natura and Artificia Systems University of Michigan Press. Ann Arbor MI; 1975. https://doi.org/10.7551/mitpress/1090.001.0001
  12. Kennedy J, Eberhart RC. Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks IV; 1995. P. 1942-1948. https://doi.org/10.1109/ICNN.1995.488968
  13. Mohammadi S, Babagoli M. A Hybrid Modified Grasshopper Optimization Algorithm and Genetic Algorithm to Detect and Prevent DDoS Attacks. International Journal of Engineering, Transactions A: Basics. 2021;34(4):811-824. https://doi.org/10.5829/IJE.2021.34.04A.07
  14. Zhou P, Ma X, Zhang Sh, Liu Zh, Meng Zh, Xiang Zh, Wang X, Sun T, Lin X, Li Y. Application of particle swarm optimization in the design of a mono-capillary X-ray lens. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2020;953(11):163077. https://doi.org/10.1016/j.nima.2019.163077
  15. Rashno A, Fadaei S. Image Restoration by Projection onto Convex Sets with Particle Swarm Parameter Optimization. International Journal of Engineering, Transactions B: Applications. 2023;36(2):398-407. https://doi.org/10.5829/IJE.2023.36.02B.18
  16. Jozaghi T, Wang C, Arroyave R, Karaman I. Design of alumina-forming austenitic stainless steel using genetic algorithms. Materials & Design. 2020;186(15):108198. https://doi.org/10.1016/j.matdes.2019.108198
  17. Rath AK, Parhi DR, Das HC, Kumar PB, Mahto MK. Design of a hybrid controller using genetic algorithm and neural network for path planning of a humanoid robot. International Journal of Intelligent Unmanned Systems. 2020;9(3):2049-6427. https://doi.org/10.1108/IJIUS-10-2019-0059
  18. Mahdavi S, Shaterzadeh A, Jafari M. Determination of optimum effective parameters on thermal buckling of hybrid composite plates with quasi-square cut-out using a genetic algorithm. Engineering Optimization. 2019;52(1):106-121. https://doi.org/10.1080/0305215X.2019.1575965
  19. Ehsani A, Rezaeepazhand J. Stacking sequence optimization of laminated composite grid plates for maximum buckling load using genetic algorithm. International Journal of Mechanical Sciences. 2016;119:97-106. https://doi.org/10.1016/j.ijmecsci.2016.09.028
  20. Le-Manh T, Lee J. Stacking sequence optimization for maximum strengths of laminated composite plates using genetic algorithm and isogeometric analysis. Composite Structures. 2014;116:357-363. https://doi.org/10.1016/j.compstruct.2014.05.011
  21. Imran M, Shi D, Tong L, Waqas HM. Design optimization of composite submerged cylindrical pressure hull using genetic algorithm and finite element analysis. Ocean Engineering. 2019;190(15):106443. https://doi.org/10.1016/j.oceaneng.2019.106443
  22. Wei R, Pan G, Jiang J, Shen K, Lyu D. An efficient approach for stacking sequence optimization of symmetrical laminated composite cylindrical shells based on a genetic algorithm. Thin-Walled Structures. 2019;142:160-170. https://doi.org/10.1016/j.tws.2019.05.010
  23. Ibrahim MA, Mahmood AK, Sultan NS. Optimal PID controller of a brushless DC motor using genetic algorithm. International Journal of Power Electronics and Drive System. 2019;10(2):822-830. https://doi.org/10.11591/ijpeds.v10.i2.pp822-830
  24. Sun Y, Xue B, Zhang M, Yen GG, Lv J. Automatically designing CNN architectures using the genetic algorithm for image classification. IEEE Transactions on Cybernetics. 2020;50(9):1-15. https://doi.org/10.1109/TCYB.2020.2983860
  25. Zamani M, Ghartemani MK, Sadati N, Parniani M. Design of fractional order PID controller for AVR using particle swarm optimization. Control Engineering Practice. 2009;17(12)1380-1387. https://doi.org/10.1016/j.conengprac.2009.07.005
  26. Ezzeddine T. Reactive power analysis and frequency control of autonomous wind induction generator using particle swarm optimization and fuzzy logic. Energy Exploration & Exploitation. 2019;38(3). https://doi.org/10.1177/014459871988637
  27. Hamed MA, Abo-Bakr RM, Mohamed SA, Eltaher MA. influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core. Engineering with Computers. 2020;36:1929–1946. https://doi.org/10.1007/s00366-020-01023-w
  28. Keshtegar B, Nguyen-Thoi T, Troung TT, Pengzhu S. Optimization of buckling load for laminated composite plates using adaptive Kriging-improved PSO: A novel hybrid intelligent method. Defence Technology, available online. 2020;17(1):85-99. https://doi.org/10.1016/j.dt.2020.02.020
  29. Huang L, Tai ng C, Sheik AH, Griffith MC. Niching particle swarm optimization techniques for multimodal buckling maximization of composite laminates. Applied Soft Computing. 2017;57:495-503. https://doi.org/10.1016/j.asoc.2017.04.006
  30. Jansen PW, Perez RE. Constrained structural design optimization via a parallel augmented Lagrangian particle swarm optimization approach. Computers & Structures. 2011;89(13-14):1352-1366. https://doi.org/10.1016/j.compstruc.2011.03.011
  31. Nguyen QH, Ly HB, Le TT, Nguyen TA, Phan VH, Tran VQ, Pham BT. Parametric investigation of particle swarm optimization to improve the performance of the adaptive neuro-fuzzy inference system in determining the bucking capacity of circular opening steel beams. Materials. 2020;13(10). https://doi.org/10.3390/ma13102210
  32. Ye J, Hajirasouliha I, Becque J, Eslami A. Optimum design of cold-formed steel beams using particle swarm optimization method. Journal of Constructional Steel Research1. 2016;22:80-93. https://doi.org/10.1016/J.JCSR.2016.02.014
  33. Xu J, Tan W, Li T. Predicting fan blade icing by using particle swarm optimization and support vector machine algorithm. Computers & Electrical Engineering. 2020;87:106751. https://doi.org/10.1016/j.compeleceng.2020.106751
  34. van Hentenryck P, Milano M. Hybrid Optimization: The Ten Years of CPAIOR. Springer Optimization and Its Applications. 2011;45. https://doi.org/10.1007/978-1-4419-1644-0
  35. Mach JB, Ronoh KK, LangatK. Improved spectrum allocation scheme for TV white space networks using a hybrid of firefly, genetic, and ant colony optimization algorithms. Heliyon. 2023;9(3):13752. https://doi.org/10.1016/j.heliyon.2023.e13752
  36. Jafari M, Salajegheh E, SalajeghehJ. Optimal design of truss structures using a hybrid method based on particle swarm optimizer and cultural algorithm. Structures. 2021;32:391-405. https://doi.org/10.1016/j.istruc.2021.03.017
  37. DengW, Zhang L, ZhouX, ZhouY, Sun Y, Zhu W, Chen H, Deng W, Chen H, Zhao H. Multi-strategy particle swarm and ant colony hybrid optimization for airport taxiway planning problem. Information Sciences. 2022;612:576-593. https://doi.org/10.1016/j.ins.2022.08.115
  38. Divasón J, Pernia-Espinoza A, Martinez-de-Pison FJ. HYB-PARSIMONY: A hybrid approach combining Particle Swarm Optimization and Genetic Algorithms to find parsimonious models in high-dimensional datasets. Neurocomputing. 2023;560:126840. https://doi.org/10.1016/j.neucom.2023.126840
  39. Li H, Sun B, Hao J, Zhao J, Li J, Khakichi A. Economical planning of fuel cell vehicle-to-grid integrated green buildings with a new hybrid optimization algorithm. International Journal of Hydrogen Energy. 2022;47(13):8514-8531. https://doi.org/10.1016/j.ijhydene.2021.12.156
  40. Deng S, Pan HY, Wang HG, Xu SK, Yan XP, Li CW, Peng MG, Peng HP, Shi L, Cui M, Zhao F. A hybrid machine learning optimization algorithm for multivariable pore pressure prediction. Petroleum Science; 2024. https://doi.org/10.1016/j.petsci.2023.09.001
  41. Fontes DBMM, Homayouni SM, Gonçalves JF. A hybrid particle swarm optimization and simulated annealing algorithm for the job shop scheduling problem with transport resources. European Journal of Operational Research. 2023;306(3):1140-1157. https://doi.org/10.1016/j.ejor.2022.09.006
  42. Bansal S, Aggarwal H. A Hybrid Particle Whale Optimization Algorithm with application to workflow scheduling in cloud–fog environment. Decision Analytics Journal. 2023;9:100361. https://doi.org/10.1016/j.dajour.2023.100361
  43. Anter AM, Elaziz MA, Zhang Z. Real-time epileptic seizure recognition using Bayesian genetic whale optimizer and adaptive machine learning. Future Generation Computer Systems. 2022;127:426-434. https://doi.org/10.1016/j.future.2021.09.032
  44. Li Z, Huang J, Wang J, Ding M. Development and application of hybrid teaching-learning genetic algorithm in fuel reloading optimization. Progress in Nuclear Energy. 2021;139:103856. https://doi.org/10.1016/j.pnucene.2021.103856
  45. Sivanandam SN, Deepa SN. Introduction to genetic algorithms. Springer Computational Intelligence and Complexity; 2008. book/10.5555/1951762
  46. Clerc M. Particle swarm optimization. Wiley-ISTE; 2006. book/10.1002/9780470612163
  47. Song C, Fei S, Cao J, Huang C. Robust synchronization of fractional-order uncertain chaotic systems based on output feedback sliding mode control. Mathematics. 2019;7(7):599. https://doi.org/10.3390/math7070599
  48. Wang S, Cao Y, Huang T, Chen Y, Li P, Wen S. Sliding mode control of neural networks via continuous or periodic sampling event-triggering algorithm. Neural Networks. 2020;121:140-147. https://doi.org/10.1016/j.neunet.2019.09.001
  49. Wang J, Yang C, Shen H, Cao J, Rutkowski L. Sliding-mode control for slow-sampling singularly perturbed systems subject to markov jump parameters. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2020;51(12):1-8. https://doi.org/10.1109/TSMC.2020.2979860
  50. Kong X, Zhang T. Distributed Cooperative Sliding Mode Fault-Tolerant Control for Multiple High-Speed Trains Based on Actor-Critic Neural Network. Journal of Mathematics. 2021;9943170. https://doi.org/10.1155/2021/9943170
  51. Bowman F. Introduction to Bessel functions. Dover Books on Mathematics; 2010. https://doi.org/10.1021/j150403a019
  52. Deb K, Beyer HG. Self-adaptive genetic algorithms with simulated binary crossover. Evoltionary Computation. 2001;9(2):197-221. https://doi.org/10.1162/106365601750190406
  53. Wei-Der Chang A. Multi-crossover genetic approach to multivariable PID controllers tuning. Expert Systems with Applications. 2007;33(3):620-626. https://doi.org/10.1016/j.eswa.2006.06.003
  54. Mahmoodabadi MJ, Adljooy Safaie A, Bagheri A, Nariman-zadeh N. A novel combination of Particle Swarm Optimization and Genetic Algorithm for Pareto optimal design of a five-degree of freedom vehicle vibration model. Applied Soft Computing. 2013;13:2577-2591. https://doi.org/10.1016/j.asoc.2012.11.028
  55. Shi Y, Eberhart RC. A modified particle swarm optimizer, IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence; 1998. p. 69-73. https://doi.org/10.1109/ICEC.1998.699146
  56. Kennedy J, Mendes R. Population structure and particle swarm performance. Proceedings of the Congress on Evolutionary Computation; 2002. P. 1671-1676. https://doi.org/10.1109/CEC.2002.1004493  
  57. MendesR, Kennedy J, Neves J. The fully informed particle swarm: Simpler, maybe better. IEEE Transactions on Evolutionary Computation. 2004;8(3):204-210. https://doi.org/10.1109/TEVC.2004.826074 
  58. Ratnaweera A, Halgamuge S, Watson H. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation. 2004;8(3):240-255. https://doi.org/10.1109/TEVC.2004.826071
  59. Liang JJ Suganthan PN. Dynamic multi-swarm particle swarm optimizer. Proceedings IEEE Swarm Intelligence Symposium; 2005. P. 124-129. https://doi.org/10.1109/SIS.2005.1501611
  60. Liang JJ, Qin AK, Suganthan PN, Baskar S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation. 2006;10(3):281-295. https://doi.org/10.1109/TEVC.2005.857610
  61. Zhan ZH, Zhan JZ, Li Y, Chung HSH. Adaptive particle swarm optimization. IEEE Transactions on System, Man and Cybernetics Part B: Cybernetics. 2009;39(6):1362-1381. https://doi.org/10.1109/TSMCB.2009.2015956
  62. Herrera F, Lozano M, Molina D. Continuous scatter search: an analysis of the integration of some combination methods and improvement strategies. European Journal of Operational Research. 2006;169(2):450-476. https://doi.org/10.1016/j.ejor.2004.08.009
  63. Price KV, Rainer M, Lampinen JA. Differential Evolution: A Practical Approach to Global Optimization. Springer-Verlag; 2005. book/10.5555/2765832
  64. Qin AK, Suganthan PN. Self-adaptive differential evolution algorithm for numerical optimization. in: Proceedings of IEEE Congress on Evolutionary Computation. 2005;2:1785-1791. https://doi.org/10.1109/CEC.2005.1554904
  65. Mahmoodabadi MJ, Salahshoor Mottaghi Z, Bagheri A. HEPSO: High exploration particle swarm optimization. Information Sciences. 2014;273:101-111. https://doi.org/10.1016/j.ins.2014.02.150
  66. Mahmoodabadi MJ, Babak NR. Fuzzy adaptive robust proportional–integral–derivative control optimized by the multi-objective grasshopper optimization algorithm for a nonlinear quadrotor. Journal of Vibration and Control. 2020;26(17-18). https://doi.org/10.1177/107754631990101
  67. Mahmoodabadi MJ, Babak NR. Robust fuzzy linear quadratic regulator control optimized by multi-objective high exploration particle swarm optimization for a 4 degree-of-freedom quadrotor. Aerospace Science and Technology. 2020;97:105598. https://doi.org/10.1016/j.ast.2019.105598
  68. Cedroa L, Wieczorkowski K. Optimizing PID controller gains to model the performance of a quadcopter. Transportation Research Procedia. 2019;40:156–169. https://doi.org/10.1016/j.trpro.2019.07.026
  69. Abdelhay S, Zakriti A. Modeling of a quadcopter trajectory tracking system using PID controller. Procedia Manufacturing. 2019;32:564-571. https://doi.org/10.1016/j.promfg.2019.02.253
  70. Madani T, Benallegue A. Backstepping control for a quadrotor helicopter. IEEE/RSJ International Conference on Intelligent Robots and Systems. 2006;9419317:3255–3260. https://doi.org/10.1109/IROS.2006.282433
  71. Chingozha T, Nyandoro O. Adaptive sliding backstepping control of quadrotor UAV attitude. IFAC Proceedings Volumes. 2014;47(3)11043-11048. https://doi.org/10.3182/20140824-6-ZA-1003.01860
  72. Raffo GV, Ortega MG, Rubio FR. An integral predictive/nonlinear control structure for a quadrotor helicopter. Automatica. 2010;46(1):29–39.  https://doi.org/10.1016/j.automatica.2009.10.018
  73. Carlton Z, Wei W, Cohen K. LQR controller applied to quadcopter system dynamics identification and verification through frequency sweeps. Multi-Rotor Platform-based UAV Systems. 2020;129-152. https://doi.org/10.1016/B978-1-78548-251-9.50007-8
  74. Ahmad F, Kumar P, Bhandari A, Patil PP. Simulation of the quadcopter dynamics with LQR based control. Materials Today: Proceedings. 2020;24 Part 2:326-332. https://doi.org/10.1016/j.matpr.2020.04.282
  75. Castillo P, Lozano R, Dzul A. Stabilisation of a mini rotorcraft with four rotors. IEEE Control Systems Magazine. 2005;25(6):45–55. https://doi.org/10.1109/TCST.2004.825052
  76. Escare˜no J, Salazar-Cruz C, Lozano R. Embedded control of a four-rotor UAV. American Control Conference. 2006;4(11):3936–3941. https://doi.org/10.1109/ACC.2008.4587031
  77. Parhizkar N, Naghash A. Comparison of back stepping optimized via pso algorithm and lqr controllers for a quadrotor. Modares Mechanical Engineering. 2017;7(7). 20.1001.1.10275940.1396.17.7.47.9
  78. Ghazbi SN, Akbar ALI, Reza M. Quadcopter: Full dynamic modeling, nonlinear simulation and control of attitudes degrees of freedom and the movement. Indian Journal of Scientific Research. 2014;1(2):759-769. 1016/j.measurement.2019.106879
  79. Arora JS. Introduction to optimum design. Academic Press, 4th Edition; 2016. book/9780123813756