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A B S T R A C T  

 

In modern production environments where perishable products are manufactured in a job shop system, 

machine reliability is of utmost importance, and delays during job processing are not acceptable. 
Therefore, it becomes crucial to consider machines maintenance activities and set upper bounds for 

interruptions between job operations. This paper tackels the Flexible Job Shop Scheduling Problem 

taking into account these factors. The study is conducted in two phases. Initially, a novel Mixed-Integer 
Linear Programming (MILP) model is elaborated for the problem and juxtaposed with the Benders 

decomposition method to assess computational efficiency. Nevertheless, owing to the elevated 

complexity of the problem, attaining an optimal solution for instances of realistic size poses an 
exceptionally challenging task using exact methods. Thus, in the second stage, a Discrete Grey Wolf 

Optimizer (D-GWO) as an alternative approach to solve the problem is proposed. The performance of 

the extended algorithms is evaluated through numerical tests. The findings indicate that for small 
instances, the Benders decomposition method outperforms other approaches. Nevertheless, as the 

instances grow in size, the efficiency of exact methods diminishes, and the Discrete Grey Wolf Optimizer 

(D-GWO) performs better under such conditions. Overall, this study highlights the importance of 
considering machines maintenance activities and interruptions in scheduling of job shop for the 

production of perishable products. The proposed model and Benders decomposition method in small 

instances, and the metaheuristic algorithm in large instances provide viable solutions.  

doi: 10.5829/ije.2024.37.08b.13 
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1. INTRODUCTION 
 
The job shop scheduling problem (JSP) is a scheduling 

challenge frequently encountered in different 
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manufacturing contexts. The complexity of scheduling 

arises from the distinctive constraints and limitations 

inherent in each manufacturing environment. The 

perishable products industry is one such sector that 
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presents its own set of special circumstances and 

limitations. With perishable products, the product 

production process is done without delay or with a 

permissible delay (lower than upper bound delay), and 

the produced products are packaged and stored 

immediately. Experiencing significant delays during 

production can severe consequences and incur high 

expenses. In production environments where the 

manufacturing system follows a job shop format, the 

scheduling problem transforms into a JSP with the 

additional constraint of maximum delay between 

operations. Moreover, anticipating potential machine 

breakdowns makes integrating maintenance into the 

schedule essential. Therefore,  manufacturing perishable 

products within a job shop system involves navigating 

numerous restrictions. 

Mahdavi et al. (1) in their study examined a particular 

scheduling problem known as the no wait flexible job 

shop scheduling problem (FJSP). This involved 

incorporating various aspects like machine maintenance 

and processing restrictions. To achieve minimal total 

lateness for the jobs, they introduced a Mixed-Integer 

Linear Programming (MILP) model, which was based on 

a model previously proposed by Gao et al. (2). 

Nevertheless, given the intricacy of the problem, they 

also developed an alternative solution approach called 

the Imperialist Competitive Algorithm (ICA), 

specifically designed to handle large instances of the 

problem. 

This research takes the problem studied by Mahdavi 

et al. (1) a step further. Instead of focusing only on no 

wait scenarios where jobs cannot wait between 

operations, they consider a more general case. This new 

formulation allows for an independent maximum waiting 

time to be defined for each job's operations. 

Consequently, the no wait problem becomes a specific 

example within this broader framework, where the 

maximum waiting time for every job is set to zero. 

Additionally, the researchers propose a novel approach to 

formulating the Mixed-Integer Linear Programming 

(MILP) model, aiming to minimize the total cost 

associated with both early and late job completions. This 

approach is inspired by the work of Ozguven et al. (3). 

This research explores a FJSP, where the goal is to 

minimize the combined cost of jobs finishing too early or 

too late. This problem takes into account three primary 

constraints: 

• An independent upper bound on waiting time between 

operations of each job 

• Periodic machines maintenance activities. 

• An independent due date for each job so that if the 

processing of the job is not completed in the due date, 

earliness and tardiness fine will be imposed. 

The problems associated with the conditions and 

limitations of the perishable food manufacturing 

industry, operating within a job shop environment, are 

the focus of this research. On the one flip side, periodic 

maintenance activities for machines and the ability to 

process operations by machines at each stage are a set of 

common constraints of any job shop production 

environment. On the other hand, allowing the upper 

bound for the amount of waiting time between operations 

of each job is a challenging restriction in the perishable 

food manufacturing industry. In previous research 

studies within the realm of FJSP, two scenarios have been 

explored: one where there is no possibility of delay time 

between job operations (referred to as no-wait FJSP), and 

another where there are no limits on the delay time 

between job operations. In the proposed problem in this 

research, it is possible to create a delay time between job 

operations, but an upper bound is defined for each job so 

that the delay time between its operations does not exceed 

its upper bound. On the other hand, the objective function 

focuses on achieving a balanced schedule by minimizing 

the total deviation from desired completion times for all 

jobs. That is to say that each job should be processed very 

close to its due date. Therefore, no wait FJSP is not 

necessarily suitable, and creating a waiting time between 

the operations of each job according to its upper bound 

may help to improve the objective function. Thus, 

according to the due date of each job, creating a delay 

time between the operations must be managed in such a 

way that the least earliness and tardiness penalty is 

imposed. In the next section, the latest literature will be 

reviewed. 

 

 

2. LITERATURE REVIEW 
 
The JSP was initially raised by Manne (4) and Wagner 

(5). They demonstrated that the JSP, widely recognized 

as NP-hard problem in literature, is extremely intricate. 

El Khoukhi et al. (6) proposed a FJSP with restrictions 

on machine accessibility to minimize the makespan. 

They suggested a Mixed-Integer Linear Programming 

(MILP) model and owing to the intricacy of the problem, 

they proposed a new solution method utilizing the ant 

nest algorithm. Yousefi Yegane et al. (7) investigated the 

FJSP to minimize the makespan. Since job splitting is an 

important technique to reduce completion time, they 

assumed that preemption is allowed. They proposed a 

memetic algorithm owing to intricacy of the problem and 

inability of exact methods in solving large instances. 

Benttaleb et al. (8) studied a JSP with two machines, 

one of them being out of reach during certain periods. In 

their research, they surveyed the optimality of the 

Jackson algorithm and developed a exploratory method, 

and provided upper and lower limit for the problem. Shen 

et al. (9) examined a FJSP where the setup time required 

to switch between jobs depends on the specific jobs 

involved. They developed a Mixed-Integer Linear 

Programming (MILP) model to find a schedule that 
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minimizes the total time it takes to complete all the jobs. 

Additionally, they developed a  TS that incorporated 

numerous novel structures to tackle this problem. 

Tamssaouet et al. (10) focused on a JSP to minimize the 

makespan in instances that machines are not always 

accessible. They proposed TS with locality functions and 

a specific diversity structure.  

Caldeira and Gnanavelbabu (11) present an enhanced 

version of Jaya Algorithm (JA) specifically tailored for 

solving FJSP with the primary objective of minimizing 

the makespan. In this study, it is assumed that there are 

setup times for machines and transfer times between 

them. Samarghandi (12) researched a no-wait JSP 

focused on minimizing the makespan while factoring in 

job due dates. His approach involved transforming the 

original problem into a related one (CP) and creating 

models for both. To solve large instances, he designed a 

Genetic Algorithm (GA). The results demonstrated that 

the proposed method performed more effectively for the 

transformed problem (CP) compared to the original JSP 

formulation. 

Zhang et al. (13) offered an enhanced Genetic 

Algorithm (GA) for a multi goal FJSP by considering 

machines processing restrictions. Li et al. (14) took the 

Jaya Algorithm (JA) a step further by creating an 

improved version specifically designed for FJSP. This 

enhanced JA incorporates the limitations of machine 

capabilities within the optimization process. Ying and 

Lin (15) focused on a no-wait JSP to minimize the 

makespan. They offered a new solution method. Zhu and 

Zhou (16) explored a FJSP where jobs have priority 

constraints and processing times are uncertain, 

represented as ranges instead of exact values. They 

introduced a novel optimization method aimed at 

minimizing the overall duration of the makespan interval. 

Zhu and Zhou (17) introduced an efficient method called 

the Grey Wolf Optimizer (GWO) for tackling a complex 

scheduling problem in FJSP. This problem involves 

balancing multiple objectives while adhering to specific 

job priority constraints. Zhang et al. (18) offered an 

enhanced memetic algorithm designed to solve the FJSP, 

with the added complexity of factoring in transportation 

times between machines. Defersha et al. (19) suggested a 

two-phase Genetic Algorithm (GA) to address a FJSP 

that involves setup times. In this investigation, machines 

may not be accessible at all times for processing jobs, and 

each machine needs a specific cooldown period after 

finishing an operation before it can handle the next one. 

Ozolins (20) tackled a no-wait JSP with the goal of 

minimizing the makespan. Their novel approach utilizes 

dynamic programming (DP) as an exact solution method. 

This method effectively solves problems of medium size 

within a sensible timeframe. Izadi et al. (21) investigated 

the integration of production and distribution scheduling, 

allowing outsourcing to minimize total costs. They 

proposed a mathematical model for small problems and a 

hybrid Genetic Algorithm (GA) approach for large ones, 

incorporating dominance properties to find optimal 

solutions.  

Gao et al. (22) investigated a no-wait JSP with due 

date restrictions. They offered two mathematical models. 

Then, they suggested a metaheuristics algorithm called 

RTL-ABC. Boyer et al. (23) investigated a FJSP with 

hard restrictions such as machine valence, time delays. 

They offered a Mixed-Integer Linear Programming 

(MILP) model to tackle this problem and also devised a 

metaheuristic approach to effectively solve larger 

instances of the problem. 

Torkashvand et al. (24) studied a new three stage 

production-assembly problem to minimize the maximum 

completion time of all jobs. They presented a Mixed 

Integer Linear Programming (MILP) model to solve 

small instances. Due to high complexity of problem, they 

developed a new improved Genetic Algorithm (GA) to 

solve large instances. Valenzuela et al. (25) investigated 

a no wait JSP and to solve large scales of the problem, 

they offered a cooperative coevolutionary algorithm. Fan 

and Su (26) presented a JSP with conveyor-based CFTs. 

In this investigation, the operations are carried out on the 

machines that are conjoined in a row through the 

conveyor. They offered a mathematical model for small 

instances and a metaheuristic for large instances. Şahman 

and Korkmaz (27) introduced innovative versions of the 

Artificial Algae Algorithm (AAA) to address discrete 

optimization problems. In this research, three encoding 

strategies were incorporated with AAA to tackle the JSP.  

Tutumlu and Saraç (28) investigated a FJSP with job-

splitting. They showed that taking into account job 

splitting in the JSP contributes to identifying 

improvement opportunities and aligns the problem more 

closely with real world conditions. In this research, they 

proposed a MIP model, and for large sizes, a hybrid 

Genetic Algorithm is presented. Gong et al. (29) 

investigated a new type of FJSP. According to the 

simulation of the real world situation, in this context, 

certain operations within a job do not have specific order 

restrictions, leading to the proposal of FJSP with discrete 

operation order flexibility. The objective is to minimize 

both the makespan and total energy consumption. They 

presented a model for small instances and improved a 

memetic algorithm for large instances. Xie et al. (30) 

delved into a type of scheduling problem called the 

distributed FJSP, which builds upon the traditional FJSP. 

They offered a mathematical model for the problem and 

owing to complexity associated with large instances, they 

proposed a new algorithm called HGTSA.  

Liu et al. (31) investigated a FJSP which is an 

expansion of the flexible manufacturing. In this research, 

they presented a mathematical model and suggested an 

enhanced Genetic Algorithm (GA) with a three-surface 

encoding strategy. Berterottiere et al. (32) investigated an 

extension of the FJSP where transportation resources are 
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considered. They extended the classical disjunctive graph 

model and offered a novel metaheuristic that utilizes a 

locality function, enabling the exploration of a wide 

range of moves. 

To our best of knowledge, this research is the first to 

concurrently take into account machines' processing 

capability, machines' maintenance activities, and an 

upper limit on the waiting time between job operations in 

the context of the FJSP. The primary contributions of this 

paper can be summarized as belows: 

• The FJSP in the perishable food manufacturing 

industry is investigated and a Mixed-Integer Linear 

Programming (MILP) model, incorporating priority 

variable, is formulated for the proposed problem. Then, a 

Benders decomposition method based on the model is 

offered as an exact method for solving small instances. 

The supremacy of Benders method in some instances 

than Gams software shows its high efficiency. 

• A modified version of the Grey Wolf Optimizer (D-

GWO) is used to tackle larger problems, and its 

effectiveness is evaluated. 

• A comprehensive analysis for the proposed solution 

methods is presented and their performance, in problems 

with different sizes, is specified. 

The remaining sections of this research will be 

organized as belows. Section 3 characterizes the problem 

and presents the mathematical model of the investigated 

problem. In section 4, the Benders decomposition 

method is presented to optimally solve small instances of 

the problem. In section 5, the metaheuristic algorithm 

(Discrete Grey Wolf Optimizer) is offered to solve large 

instances. Computational results are mooted in section 6. 

Finally, conclusions are provided in section 7. 

 

 

3. PROBLEM DESCRIPTION AND FORMULATIONS 
 
The FJSP considers a scenario with multiple machines 

and jobs. Each job needs processing on specific 

machines, but there's a twist! Instead of being assigned to 

a single machine for each operation, jobs have the option 

to select from a pool of accessible machines within each 

stage. This problem involves m stages, each containing 

parallel machines that can work independently, and n 

jobs, each consisting of a order of operations with 

flexible machine choices. The other suppositions of the 

problem are as follows: 

• From the outset, both jobs and machines are readily 

available for scheduling. However, keep in mind that 

each machine is limited to handling only one operation at 

any given time. 

• Each job follows a predetermined sequence of 

operations, outlining the exact steps it takes to be 

completed. 

• The processing path of each job may not involve 

machines from all stages. This means some jobs might 

only require a subset of the available stages. 

• No multitasking allowed! Each job is restricted to being 

on one machine at any given time. 

• Preemption, or interrupting and resuming operations, is 

prohibited.  

• The gap duration between two successive operations of 

the same job must be lower than its upper limit of 

interruption. 

• If each job has not been processed on its due date, a 

penalty is imposed. 

• Not all machines are capable of handling every 

operation. In other words, each machine is capable of 

processing a certain set of jobs (and not necessarily all of 

them). 

• The machine structure of each stage is parallel and 

unrelated. 

• Because of maintenance activities, each machine must 

be periodically unaccessible. 

• Each inaccessible interval last for a certain period. In 

other word, the interval length is fixed.  

• The objective is to create a realistic schedule that 

ensures jobs finish as close to their deadlines as possible, 

without being completed too early or too late. 

This section introduces the notations used to define the 

key components of the model: indices, parameters, and 

decision variables. 

Indices: 

𝑖, ℎ: represent the indices of jobs, ranging from 1 to 𝑛. 

𝑗: denotes the index of operations, ranging from 1 to 𝐽𝑖 for a 

specific job 𝑖. 

𝑘: represents the index of machines, ranging from 1 to 𝑚. 

𝑟: is the index of the inaccessibility period. 

Parameters: 

𝑛: represent the whole number of jobs 

𝑚: represent the whole number of machines 

𝐽𝑖: represent the whole number of operations of job 𝑖 

𝑝𝑘𝑖𝑗: represents the processing time of operation 𝑜𝑖𝑗 if it is 

carried out on machine 𝑘 

𝑑𝑖 : denotes the due date of job 𝑖 

𝑢𝑏𝑤ℎ : The upper bound of waiting time between operations 

of job ℎ. 

𝑠𝑚𝑘𝑟: denotes the start time of the r-th inaccessibility period 

on machine 𝑘. 

𝑓𝑚𝑘𝑟 : represents the end time of the r-th inaccessibility 

period on machine 𝑘. (𝑓𝑚𝑘𝑟 − 𝑠𝑚𝑘𝑟 = 𝑇) 

𝑀: represents a large numerical value. 
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Decision variables: 

𝑇𝑖: tardiness of job 𝑖. 

𝐸𝑖: earliness of job 𝑖. 

𝑉𝑖𝑗𝑘: 𝑉𝑖𝑗𝑘 takes the value of 1 if operation 𝑜𝑖𝑗 is performed 

on machine 𝑘; otherwise 𝑉𝑖𝑗𝑘 is 0. 

𝑍𝑖𝑗ℎ𝑔𝑘: 𝑍𝑖𝑗ℎ𝑔𝑘 is 1 if 𝑜𝑖𝑗 precedes operation 𝑜ℎ𝑔 on machine 

𝑘; otherwise 𝑍𝑖𝑗ℎ𝑔𝑘 is 0. 

𝑠𝑖𝑗𝑘: denotes the start time of operation 𝑜𝑖𝑗 on machine k 

𝑐𝑖𝑗𝑘 : represents the completion time of operation 𝑜𝑖𝑗  on 

machine 𝑘. 

𝑐𝑖: denotes the completion time of job 𝑖. 

𝐵𝑖𝑗𝑘𝑟: binary variable in unavailability constraints 

 

This section describes a mathematical model for the 

problem using an approach called the priority variable-

based model. This approach relies on a specific type of 

variable (represented by  𝑍𝑖𝑗ℎ𝑔𝑘) introduced by Manne 

(4). It is important to note that  𝑍𝑖𝑗ℎ𝑔𝑘  being 1 does not 

necessarily mean oij comes immediately before ohg. This 

variable only needs to be defined when i is less than h, 

because the order of operations within the same job is 

already fixed. The model presented here utilizes this 

concept of priority variables to formulate the problem as 

a Mixed-Integer Linear Programming (MILP). 

This modeling approach was initially introduced by 

Ozguven et al. (3) for formulating the FJSP and we have 

adopted it for our FJSP as follows: 

Min ∑ (𝐸𝑖+𝑇𝑖)𝑖  (1) 

S.T.  

𝑐𝑖 ≥ ∑ 𝑐𝑖𝑗𝑘𝑘∈𝑀𝑖𝑗
    , ∀ 𝑖 , 𝑗 = 𝐽𝑖   (2) 

𝑠𝑖𝑗𝑘 + 𝑐𝑖𝑗𝑘 ≤ 𝑉𝑖𝑗𝑘 . 𝑀    ,    ∀ 𝑖 , 𝑗   ∀𝑘 ∈ 𝑀𝑖𝑗 (3) 

𝑐𝑖𝑗𝑘 ≥ 𝑠𝑖𝑗𝑘 + 𝑝𝑘𝑖𝑗 − 𝑀. (1 − 𝑉𝑖𝑗𝑘)   , ∀ 𝑖 , 𝑗   ∀𝑘 ∈

𝑀𝑖𝑗  
(4) 

𝑠𝑖𝑗𝑘 ≥ 𝑐ℎ𝑔𝑘 − 𝑀.  𝑍𝑖𝑗ℎ𝑔𝑘     , ∀ 𝑖 ≤ ℎ , ∀ 𝑗, 𝑔  ∀𝑘 ∈

𝑀𝑖𝑗 ∩ 𝑀ℎ𝑔 
(5) 

𝑠ℎ𝑔𝑘 ≥ 𝑐𝑖𝑗𝑘 − 𝑀. ( 1 − 𝑍𝑖𝑗ℎ𝑔𝑘) ,  ∀ 𝑖 ≤

ℎ , ∀ 𝑗, 𝑔  ∀𝑘 ∈ 𝑀𝑖𝑗 ∩ 𝑀ℎ𝑔 
(6) 

∑ 𝑠𝑖𝑗𝑘𝑘∈𝑀𝑖𝑗
≥ ∑ 𝑐𝑖𝑗−1𝑘𝑘∈𝑀𝑖𝑗

   ,   ∀ 𝑖 , 𝑗 = 2,… , 𝐽𝑖 (7) 

∑ 𝑠𝑖𝑗𝑘𝑘∈𝑀𝑖𝑗
≤ ∑ 𝑐𝑖𝑗−1𝑘𝑘∈𝑀𝑖𝑗

 + 𝑢𝑏𝑤𝑖    ,  ∀ 𝑖 , 𝑗 =

2,… , 𝐽𝑖  
(8) 

∑ 𝑉𝑖𝑗𝑘 = 1𝑘∈𝑀𝑖𝑗
     ,     ∀ 𝑖 , 𝑗 (9) 

𝑇𝑖 ≥ 𝑐𝑖 − 𝑑𝑖     , ∀ 𝑖          (10) 

𝐸𝑖 ≥ 𝑑𝑖 − 𝑐𝑖      , ∀ 𝑖        (11) 

𝑠𝑖𝑗𝑘 < (𝑠𝑚𝑘,𝑟 ∗ 𝑉𝑖𝑗𝑘) + 𝑀 ∗ 𝐵𝑖𝑗𝑘𝑟    ,  ∀ 𝑖 , 𝑗, 𝑘, 𝑟                                            (12) 

𝑐𝑖𝑗𝑘 < (𝑠𝑚𝑘,𝑟 ∗ 𝑉𝑖𝑗𝑘) + 𝑀 ∗ 𝐵𝑖𝑗𝑘𝑟    , ∀ 𝑖 , 𝑗, 𝑘, 𝑟                                      (13) 

𝑠𝑖𝑗𝑘 < (𝑠𝑚𝑘,𝑟 ∗ 𝑉𝑖𝑗𝑘) + 𝑀(1 − 𝐵𝑖𝑗𝑘𝑟)  ,  ∀ 𝑖 , 𝑗, 𝑘, 𝑟                                 (14) 

𝑐𝑖𝑗𝑘 < (𝑠𝑚𝑘,𝑟 ∗ 𝑉𝑖𝑗𝑘) + 𝑀(1 − 𝐵𝑖𝑗𝑘𝑟)  ,   ∀ 𝑖 , 𝑗, 𝑘, 𝑟                      (15) 

𝑠𝑖𝑗𝑘 > (𝑓𝑚𝑘,𝑟 ∗ 𝑉𝑖𝑗𝑘) + 𝑀(1 − 𝐵𝑖𝑗𝑘𝑟)  ,  ∀ 𝑖 , 𝑗, 𝑘, 𝑟                        (16) 

𝑐𝑖𝑗𝑘 > (𝑓𝑚𝑘,𝑟 ∗ 𝑉𝑖𝑗𝑘) + 𝑀(1 − 𝐵𝑖𝑗𝑘𝑟)  ,  

 ∀ 𝑖 , 𝑗, 𝑘, 𝑟        
(17) 

𝑠𝑖𝑗𝑘 ≥ 0    ,    𝑐𝑖𝑗𝑘 ≥ 0     , ∀ 𝑖 , 𝑗 , 𝑘           (18) 

𝑐𝑖 ≥ 0     ,    𝑇𝑖 ≥ 0      ,   𝐸𝑖 ≥ 0 , ∀ 𝑖 , 𝑗 , 𝑘         (19) 

𝑧𝑖𝑗ℎ𝑔𝑘 ∈ {0,1}   , ∀ 𝑖 ≤ ℎ , ∀ 𝑗, 𝑔  ∀𝑘 ∈ 𝑀𝑖𝑗 ∩ 𝑀ℎ𝑔        (20) 

𝑉𝑖𝑗𝑘 ∈ {0,1}   ,   ∀ 𝑖 , 𝑗, 𝑘   (21) 

𝐵𝑖𝑗𝑘𝑟 ∈ {0,1}   ,    ∀ 𝑖 , 𝑗, 𝑘, 𝑟                               (22) 

Equation 1 determines goal function as minimizing 

whole earliness and tardiness of jobs. Constraint 2 

specifies the completion times of the jobs. Constraint 3 

describes each operation has beginning time and 

completion time when is devoted to a machine; If not 

devoted, both times are set to 0. Constraint 4 ensures the 

processing time on a machine matches the difference 

between start and end times. Constraints 5 and 6 prevent 

two operations from being processed simultaneously on 

any machine. Constraints 7 and 8 describe the operation 

precedence constraints and guarantee that the 

interruption between two successive operations of any 

job does not exceed its upper bound. Constraint 9 

guarantees that each operation is devoted to precisely one 

machine. Constraints 10 and 11 specifies the tardiness 

and earliness of each job. Constraints 12 to 17 

characterize inaccessibility periods for machines and 

compel each operation oij be processed between periods 

when the machine is active. Constraints 18 to 22 

characterize the type of decision variables. 

 

 

4. BENDERS DECOMPOSITION METHOD 
 
Benders decomposition, developed by Benders [33] is a 

well-established optimization technique frequently used 

to tackle intricate integer problems and identify optimal 

solutions. This method divides the problem model into 
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two main problems (including complicated variables 

such as integers and binaries) and a subproblem 

(including other variables). In this method, the optimal 

solution is determined by utilizing upper and lower 

limits. In minimization problems by solving the master 

problem (MP), the value of its goal function is considered 

as a lower bound and to obtain the upper bound, a dual 

subproblem (DSP) must be solved. Then, the sum of the 

goal function value of the DSP optimal solution and the 

goal function value of the MP optimal solution is 

considered as the upper bound. In the Benders 

decomposition method, first, the MP, SP, and DSP 

problems must be identified and the MP problem solved 

to obtain a lower bound and the values of the complicated 

variables (minimization problem). Then, by fixing the 

complicated variables according to the obtained values 

(in the MP problem), the DSP problem is solved and an 

upper bound is created for the goal function of the 

problem. In each step of the method, the discrepancy 

between the upper and lower bounds is evaluated, and if 

it is less than a specific value, the algorithm stops and the 

optimal solution is placed between the upper and lower 

limit values. If the algorithm does not stop an optimality 

cutting plane is added to the MP problem according to 

the DSP solution; thus, the MP problem is solved again 

and the values of the complicated variables and the lower 

bound of the problem are obtained. This procedure is 

repeated to reduce the discrepancy between the upper and 

lower bounds until this discrepancy falls below a 

predetermined value. Figure 1 depicts a flowchart of the 

Benders decomposition method. 

As mentioned above, the presented mathematical 

model is used as the basic model of the Benders 

decomposition method; so at the beginning, the MP and 

SP problems will be as follows: 

MP: 

𝑀𝑖𝑛 𝑍         (23) 

∑ 𝑉𝑖𝑗𝑘 = 1𝑘        ,     ∀ 𝑖, 𝑗        (24) 

Constraints 3.20 𝑡𝑜 3.22  (25) 

𝑍 ≥ 0                                (26) 

SP: 

Min ∑ (𝐸𝑖+𝑇𝑖)𝑖             (27) 

Constraints 2 𝑡𝑜 8        (28) 

Constraints 10 𝑡𝑜 19  (29) 

In the next step, the dual subproblem is evaluated and  the 

Benders decomposition method is implemented 

according to the flowchart in Figure 1. According to the 

flowchart in Figure 1, if the DSP problem is infinite, the 

corner orientations that lead to the infinity of the DSP 

problem must be found and eliminated in the DSP 

problem. In other words, a feasibility cutting plane 

corresponding to each of the corner orientations must be 

added to the MP problem. 

 

 

5. METAHEURISTIC ALGORITHM 
 
The JSP is recognized as an high complexity 

optimization problem in the field of production 

scheduling. Since the JSP is a specific type of FJSP, it 

follows that FJSP is also NP-hard and exhibits high 

 
 

 
Figure 1. Benders decomposition method flowchart 
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complexity. In the preceding sections, a mathematical 

model and Benders decomposition method were 

presented with the aim of obtaining the optimal solution. 

Nevertheless, the FJSP is of such complexity that even 

powerful optimization methods struggle with large 

instances. To tackle this, a new approach called D-GWO 

is introduced. This method is designed to rapidly 

generate good solutions, although not necessarily 

optimal, even for large and intricate instances. 

 

5. 1. Solution Representation                Job-based 

encoding is like a recipe for this process. Each job is like 

an ingredient, and its position in the recipe tells you 

exactly when and on which machine it needs to be 

processed. This ensures all jobs are completed in the right 

order, and makes comparing different production 

schedules like comparing different recipes – you can 

observe how altering the order of jobs influences the 

outcome. In this representation, the length of this solution 

code is the number of jobs (n). Each job position in the 

code tells you when it's processed on the machines. For 

instance, in Figure 2, the solution depicts a scenario with 

three jobs. Each job is comprised of multiple operations 

and follows a distinct processing route. 

Decoding is a crucial step in the process of evaluating 

the goal function for a given solution to a JSP. The 

decryption algorithm offered by Brizuela et al. (33) is 

specifically tailored for problems with no wait 

constraints, and it likely provides an effective method for 

transforming the encoded solution into a schedule that 

can be evaluated to determine the goal function's value. 

The algorithm consists of the following phases: 

Phase 1: Initializing a workless times list for each 

machine. At the commencement of the schedule, when 

no jobs have commenced, all machines are entirely 

workless except for intervals allocated for maintenance 

tasks. 

Phase 2: Handling the operations of the first job that 

hasn't been processed yet in the encoded solution 

sequentially. 

Phase 3: Updating the list of workless times for each 

machine. 

Phase 4: Verifying whether all jobs are done. If so, the 

algorithm halts; otherwise, it goes back to step 2. 

To provide a clearer understanding of the decoding 

approach, let's take an example involving 3 jobs and 3 

stages. It's worth noting that it's quite fascinating that not 

all stages of machines may be necessary for processing 

each job.  

For instance, in the stage 1, there are two machines: 

M₁ and  𝑀1
̅̅ ̅̅ . In the stage 2, there are two machines: M₂ 

 

 

3 1 2 
 

Figure 2. An encoded solution for a problem with three jobs 
 

and 𝑀2
̅̅ ̅̅ . Finally, in the stage 3, only machine M₃ is 

needed. Let's examine the jobs in more detail. The first 

job comprises two operations. The first operation must be 

processed on 𝑀1
̅̅ ̅̅  in stage 1, while the second operation is 

assigned to M₃ in stage 3. The second job also consists of 

two operations. The first operation should be processed 

on 𝑀2
̅̅ ̅̅  in stage 2, and the second operation on 𝑀1

̅̅ ̅̅  in stage 

1. The third job encompasses three operations. The first 

operation is processed on M₁ in stage 1, the second 

operation on M₃ in stage 3, and the third operation on M₂ 

in stage 2. Let's consider the processing times for these 

operations. The first and second operations of job 1 

require 3 and 1 units of time, respectively. For job 2, the 

first and second operations need 3 and 4 units of time, 

respectively. As for job 3, its operations require 1, 2, and 

1 units of time, respectively. The due dates for jobs 1, 2, 

and 3 are 15, 18, and 16, respectively. Additionally, the 

upper bounds for jobs 1, 2, and 3 are 3, 0, and 5, 

respectively. There are also periods of unavailability for 

the machines. Every 5 time units or every 7 time units, 

the machines undergo preventive maintenance and 

repair, rendering them unavailable for a period of two 

time units. Initially, the idle times for the machines are 

listed in Table 1. Now, let's consider the encrypted 

solution presented in Figure 2. 

The initial step in the decoding process, based on the 

encoded solution shown in Figure 2, involves processing 

job 3. To ensure job 3 is completed precisely on time, the 

timetable displayed in Figure 3 is used for scheduling. 

Once job 3 is scheduled, the idle times of the machines 

are updated and recorded in Table 2. Next, the focus 

shifts to determining the optimal start time for job 1. This 

ensures that job 1's operations are processed on the 

required machines and the job is completed as closely as 

possible to its due date. The scheduling of job 1 is carried 

out using the schedule illustrated in Figure 4. After 

scheduling jobs 3 and 1, the idle times of the machines 

are once again updated and documented in Table 2. 

Following this, the processing start time for job 2 is 

examined to ensure that all its operations are completed 

on different required machines and the job is finished 

close to its due date. The timetable depicted in Figure 5 

is used to schedule job 2. It is observed from Figure 5 that 

 

 
TABLE 1. List of idle times for machines at the 

commencement 

Idle time Machine 
[0,7] ∪ [9,16] ∪ [18,25] + … M1  
[0,7] ∪ [9,16] ∪ [18,25] + … �̅�1  
[0,5] ∪ [7,12] ∪ [14,19] + … M2  

[0,7] ∪ [9,16] ∪ [18,25] + … �̅�2  
[0,5] ∪ [7,12] ∪ [14,19] + … M3  
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TABLE 2. List of idle times for machines  

Idle time 
Machine 

after scheduling job 1 and job 3 after scheduling job 3 

[0,7] ∪ [10,16] ∪ [18,25] + … [0,7] ∪ [10,16] ∪ [18,25] + … M1  

[0,7] ∪ [12,16] ∪ [18,25] + … [0,7] ∪ [9,16] ∪ [18,25] + … �̅�1  

[0,5] ∪ [7,12] ∪ [14,15] ∪ [16,19] + … [0,5] ∪ [7,12] ∪ [14,15] ∪ [16,19] + … M2  

[0,7] ∪ [9,16] ∪ [18,25] + … [0,7] ∪ [9,16] ∪ [18,25] + … �̅�2  

[0,5] ∪ [7,10] ∪ [15,19] + … [0,5] ∪ [7,10] ∪ [14,19] + … M3  

 

 

 
Figure 3. Schedule for job 3 based on the provided encoded solution 

 

 

 
Figure 4. Schedule for job 3 and job 1 based on the provided encoded solution 

 

 

 
Figure 5. Schedule for all jobs based on the provided encoded solution 
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job 2 has an upper bound of zero, indicating no 

interruption is permitted between its operations. In order 

to optimize the objective function, job 2 is scheduled to 

commence at time unit 9, aligning with its due date. Once 

all the jobs have been processed, the decoding algorithm 

is terminated, and the schedule from Figure 5 is selected 

as the final schedule for the encoded solution presented 

in Figure 2. 

 

5. 2. Discrete Grey Wolf Optimizer (D-GWO)        The 

Grey Wolf Optimizer (GWO), introduced by Mirjalili et 

al. (34), is a population-based metaheuristic algorithm 

that has gained popularity for solving continuous 

optimization problems. This algorithm is inspired by grey 

wolves and this inspiration comes from both their social 

structure (living) and hunting behavior in their natural 

habitat. Grey wolves are known to live in groups of 5 to 

12 individuals and exhibit a strict social structure. The 

group is led by alpha wolves, who hold a crucial role in 

decision-making. The rest of the pack follows the 

decisions made by the alpha wolves. Beta wolves occupy 

the next level in the hierarchy and follow the commands 

of the alpha wolves, relaying those commands to the rest 

of the group. At the lowest level, omega wolves provide 

protection and submit to the dominant wolves. Wolves 

that do not fit into these categories are classified as delta 

wolves, following the alpha and beta wolves while 

having dominance over the omega wolves. An intriguing 

behavior observed in wolves is group hunting, which 

involves three primary stages: encircling the prey, 

hunting, and attacking the prey. The first two stages, 

encircling the prey and hunting, are focused on exploring 

the search space. The final stage, attacking the prey, 

emphasizes exploitation. 

In the process of encircling the prey, let's consider 

𝑋(t) as the position of a wolf and 𝑋𝑝(t) as the position of 

the prey at the current iteration of the algorithm. This 

process can be represented by Equations 30 to 33 (34): 

(𝑡 + 1) = 𝑋𝑝(𝑡) − 𝐴. 𝐷(𝑡) (30) 

𝐷(𝑡) = |𝐶. 𝑋𝑝(𝑡) − 𝑋(𝑡)| (31) 

𝐴 = 𝛼(2𝑟1 − 1)  (32) 

𝐶 = 2𝑟2  (33) 

Here, 𝐶 and 𝐴 are vectors, and r1 and r2 are random 

numbers ranging from 0 to 1. The value of α gradually 

decreases from 2 to 0. 

As depicted in Equation 30, wolves reduce their 

distances from the prey ( Xp(t)). This distance is 

influenced by two factors: A, which gradually 
diminishes, and D, which signifies the distance from the 

prey's location. With the progression of the algorithm's 

iteration count, the wolves draw nearer to the prey. This 

behavior enables them to encircle the prey, given that 

their initial locations are randomly determined. 

During the hunting process, the alpha wolf takes the 

lead within the group, with the beta and delta wolves also 

potentially participating. The position of the prey 

(optimal point) is denoted by Xp(t), and it is usually 

unknown. Despite the unknown location, it's assumed 

that all three wolves have a good understanding of where 

the prey might be. The GWO mimics how wolves 

collaborate during a hunt to find prey. It maintains a 

virtual pack of potential solutions, with alpha, beta, and 

delta representing the leaders who have an intuitive 

understanding of the optimal solution (the prey). These 

leaders' positions are constantly updated and stored. The 

remaining wolves (other potential solutions) don't have 

this innate knowledge. Instead, they strategically adjust 

their positions by considering the positions of alpha, beta, 

and delta, employing Equations 34 to 37 (34). 

𝑋1(𝑡) = 𝑋𝛼(𝑡) − 𝐴1. 𝐷𝛼(𝑡) 
(34) 

𝐷𝛼(𝑡) = |𝐶1. 𝑋𝛼(𝑡) − 𝑋(𝑡)|  

𝑋2(𝑡) = 𝑋𝛽(𝑡) − 𝐴2. 𝐷𝛽(𝑡) 

(35) 

𝐷𝛽(𝑡) = |𝐶2. 𝑋𝛽(𝑡) − 𝑋(𝑡)|  

𝑋3(𝑡) = 𝑋𝛿(𝑡) − 𝐴3. 𝐷𝛿(𝑡)    

(36) 

𝐷𝛿(𝑡) = |𝐶3. 𝑋𝛿(𝑡) − 𝑋(𝑡)|  

𝑋(𝑡 + 1) = (𝑋1(𝑡) + 𝑋2(𝑡) + 𝑋3(𝑡))/3      (37) 

In Equation 37, the updated position of a wolf 𝑋(𝑡 + 1) 

is determined as the average of the positions of the alpha, 

beta, and delta wolves. 

As previously mentioned, the GWO is commonly 

utilized for continuous optimization problems. However, 

in recent times, researchers have made efforts to adapt it 

for discrete optimization problems due to the significant 

achievements of the traditional GWO in continuous 

optimization. One such adaptation is the Discrete Grey 

Wolf Optimizer (D-GWO), introduced by Hosseini 

Shirvani (35). This new version tackles the challenge by 

introducing Binary operators and Walking Around 

approache. Binary operators handle the discrete nature of 

the problem, allowing the algorithm to work with specific 

values instead of continuous ranges. Walking around 

helps the algorithm maintain a balance between 

exploring the entire search space (exploration) and 

focusing on promising areas (exploitation). Additionally, 

Jiang et al. (36) have developed another variant of the D-

GWO algorithm with the objective of minimizing the 

makespan. This variant is specifically designed to tackle 

two combinatorial optimization problems in the 

manufacturing domain: JSP and FJSP. In this algorithm, 
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a searching operator based on crossover operations is 

utilized to ensure the algorithm operates within the 

discrete domain. Furthermore, an adaptive mutation 

method is introduced to maintain population diversity 

and prevent premature convergence. For the purpose of 

this study, the D-GWO presented by Hosseini Shirvani 

(35) is employed to solve large instances of the proposed 

FJSP. Below, you will find further details regarding the 

D-GWO. 

 

5. 2. 1. Wolf Representation         As indicated in 

section 4-1, the algorithm proposed herein represents 

each solution (wolf) through a sequence, dictating the 

order of job execution on the machines. In a scenario 

involving n jobs, this representation comprises a 

sequence with n elements, ensuring that each job appears 

precisely once in the sequence. This guarantees that every 

job is accounted for and executed within the solution. 

 

5. 2. 2. Binary Vectors and Operators              The 

path taken by an individual wolf towards its prey is 

guided by the three top-ranking wolves, namely alpha 

( 𝑊𝛼), beta ( 𝑊𝛽), and delta ( 𝑊𝛿). Consequently, novel 

binary vectors and operators are introduced to leverage 

the collective knowledge of these leader wolves 

concerning the traversed discrete search space. This 

involves the use of binary vectors Tokeni and Adjusteri 

for comparing each wolf with the leader wolves. To 

execute this, each wolf needs to rearrange jobs in its 

representation to align with the leaders. In the vector, a 

zero value indicates that the corresponding job does not 

need to be changed. It's worth noting that the first and last 

jobs are exempt from alterations, denoted by being set to 

zero in the Token vector. 

In the proposed algorithm, the movement of an 

individual wolf towards its prey is guided by the three 

leading wolves: alpha ( 𝑊𝛼), beta ( 𝑊𝛽), and delta ( 𝑊𝛿). 

To leverage the knowledge of these leader wolves about 

the traversed discrete search space, new binary vectors 

and operators are introduced. Two binary vectors, 

Tokeni and Adjusteri, are utilized for comparison 

between each wolf and the leader wolves. The purpose is 

to ensure that each wolf relocates jobs in its 

representation similar to the leaders. The value of zero in 

the Token vector signifies that the corresponding job 

does not need to be changed. However, the first and last 

jobs are exempted from any changes, so they are set to 

zero in the Token vector. During initialization, all jobs 

are considered for potential changes, resulting in an 

initial Token vector value of one. The operator\ is utilized 

to signify the differences in corresponding jobs between 

two wolves (35). For example, let's consider the case 

where n=6, and Token1 = (0,1,1,0,1,0) for  𝑊1, and 

Tokenα = (0,0,1,1,1,0) for  𝑊𝛼 . The operation Token1 \ 

Tokenα yields: 

𝑇𝑜𝑘𝑒𝑛1 ∖ 𝑇𝑜𝑘𝑒𝑛𝛼 = (0,1,1,0,1,0) ∖ (0,0,1,1,1,0) =
(0,1,0,1,0,0)  

As shown, the output bit remains zero for the same 

positions since no changes are necessary (35). Another 

operator, "⨂", is used to determine if a bit should be 

changed based on the corresponding Adjuster value. If 

Token1 = (0,1,1,0,0,0) and Adjuster1 = (0,0,1,0,1,0), 

the operation Token1 ⨂ Adjuster1 results in : 

𝑇𝑜𝑘𝑒𝑛1 = (0,1,1,0,0,0)  ⨂  (0,0,1,0,1,0) = (0,1,0,0,1,0)  

The Adjuster vector serves as a guide for the Token 

vector to prevent duplicate changes on specific jobs (35). 

 

5. 2. 3. Description of Customized D-GWO      
Algorithm parameters are divided into two categories:  

1. General Parameters: 

• Population size (PS): This parameter determines the 

number of wolves in each iteration of the algorithm. 

• Maximum iterations (MI): This sets the limit on how 

many times the algorithm will repeat its calculations. It's 

like the maximum number of attempts the wolves have to 

find the prey. 

2. Instance-related parameters: 

• Quantity of jobs (n) 

• Count of stages and machines within each stage 

• Route of job processing 

• Capability of each machine 

• Processing time for each job on every machine 

• Intervals for maintenance 

• Job due dates 

• Upper bound for waiting time between operations 
 

D-GWO Algorithm: 

Step 1: Generate the initial population of solutions 

(wolves) equal to PS and set 𝑍 = 1. 

Step 2: Generate binary vectors  of Token and Adjuster 

for each wolf: 

𝑇𝑜𝑘𝑒𝑛𝑖 = (𝑏𝑖1, 𝑏𝑖2, … , 𝑏𝑖𝑛) = 1⃗   

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖 = (𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑛) = 1⃗   

Step 3: Calculate the value of the goal function of each 

wolf according to the method of section 4-1. 

The top-performing solution is identified as the alpha 

wolf (𝑊𝛼). The second-best solution is designated as the 

beta wolf (𝑊𝛽). The third-best solution is recognized as 

the delta wolf  (𝑊𝛿). 

Step 4: if 𝑍 ≤ 𝑀𝐼 then set 𝑖 = 1 and proceed to step 5, 

otherwise (𝑍 > 𝑀𝐼) proceed to step 10. 

Step 5: if 𝑖 ≤ 𝑃𝑆 then proceed to step 6, otherwise (𝑖 >
𝑃𝑆) proceed to step 9. 

Step 6: In the exploration phase, call algorithm EXP for 

encircling the prey (update the position 𝑊𝑖). 

Step 7: In the exploitation phase, call algorithm SWP for 

Swap mutation (update the position 𝑊𝑖). 
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Step 8: Calculate the value of the goal function of wolf 

𝑊𝑖 according to the method of section 4-1. If there is a 

change in the alpha, beta, and delta wolves, update them 

and set 𝑖 = 𝑖 + 1  and move on to step 5. 

Step 9: Add one to the number of iterations of the 

algorithm (𝑍 = 𝑍 + 1) and go to step 4. 

Step 10: Among the solutions in the last iteration (final 

wolves), choose the best wolf (𝑊𝛼) and set it as the final 

solution for the problem. 

EXP Algorithm: 

The EXP algorithm is employed to adjust the position of 

each wolf (𝑊𝑖) and takes the following parameters as 

input: 

• 𝑊𝑖  ,𝑊𝛼 ,𝑊𝛽  ,𝑊𝛿 

• 𝑇𝑜𝑘𝑒𝑛𝑖  , 𝑇𝑜𝑘𝑒𝑛𝛼  , 𝑇𝑜𝑘𝑒𝑛𝛽  , 𝑇𝑜𝑘𝑒𝑛𝛿  

• 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖  , 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝛼  , 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝛽  , 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝛿  

The procedure of the algorithm unfolds as belows: 

Step 1: Calculate the  𝐹1 , 𝐹2 , 𝐹3: 

• 𝐹1 is equal to the value of the goal function of 𝑊𝛼 

• 𝐹2 is equal to the value of the goal function of 𝑊𝛽 

• 𝐹3 is equal to the value of the goal function of 𝑊𝛿  

• 𝐹1 ≤ 𝐹2 ≤ 𝐹3  

Step 2: Calculate the  𝑃1 , 𝑃2 , 𝑃3: 

𝑃1 =
𝐹1

𝐹1+𝐹2+𝐹3
       

  {
𝑃1 ≤ 𝑃2 ≤ 𝑃3        
𝑃1 + 𝑃2 + 𝑃3 = 1

   𝑃2 =
𝐹2

𝐹1+𝐹2+𝐹3
         

𝑃3 =
𝐹3

𝐹1+𝐹2+𝐹3
       

Step 3: Calculate the  𝑇𝑜𝑘𝑒𝑛𝐷𝑖𝑓𝑓1 , 𝑇𝑜𝑘𝑒𝑛𝐷𝑖𝑓𝑓2 , 
𝑇𝑜𝑘𝑒𝑛𝐷𝑖𝑓𝑓3 and set 𝑗 = 1:  

𝑇𝑜𝑘𝑒𝑛𝐷𝑖𝑓𝑓1 = 𝑇𝑜𝑘𝑒𝑛𝑖 ∖ 𝑇𝑜𝑘𝑒𝑛𝛼   

𝑇𝑜𝑘𝑒𝑛𝐷𝑖𝑓𝑓2 = 𝑇𝑜𝑘𝑒𝑛𝑖 ∖ 𝑇𝑜𝑘𝑒𝑛𝛽  

𝑇𝑜𝑘𝑒𝑛𝐷𝑖𝑓𝑓3 = 𝑇𝑜𝑘𝑒𝑛𝑖 ∖ 𝑇𝑜𝑘𝑒𝑛𝛿   

Step 4: Choose a random number in (0 , 1) as 𝑞: 

• If  𝑞 < 𝑃1  then 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖(𝑗) is obtained as 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖(𝑗) = 𝑇𝑜𝑘𝑒𝑛𝐷𝑖𝑓𝑓1(𝑗)  

• If  𝑃1 ≤ 𝑞 < 𝑃2  then 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖(𝑗) is obtained as 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖(𝑗) = 𝑇𝑜𝑘𝑒𝑛𝐷𝑖𝑓𝑓2(𝑗)  

• If  𝑃2 ≤ 𝑞 ≤ 𝑃3  then 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖(𝑗) is obtained as 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖(𝑗) = 𝑇𝑜𝑘𝑒𝑛𝐷𝑖𝑓𝑓3(𝑗)  

Step 5: If 𝑗 = 𝑛, then move on to step 6, otherwise Add 

one to 𝑗 (𝑗 = 𝑗 + 1) and move on to step 4. 

Step 6: make change on 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖  vector as follow: 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖(1) = 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖(𝑛) = 0  

Step 7: Revise 𝑊𝑖 to encircle the prey by adjusting its 

trajectory according to 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖: 
Exchange job 𝑗 and job 𝑘 where 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖(𝑗) =
𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖(𝑘) = 1 and 𝑗 ≠ 𝑘.    

Step 8: Consider 𝑊𝑖 as output of algorithm. 

SWP Algorithm: 

Algorithm SWP is used to make swap mutation on each 

wolf and receives 𝑊𝑖 and 𝑛 as inputs. 

Below are the outlined steps of the algorithm: 

Step 1: Choose two random integer number in (1 , 𝑛) as 𝑗 
and 𝑘. 

Step 2: Set 𝑎 = 𝑊𝑖(𝑗) and 𝑏 = 𝑊𝑖(𝑘) 

Step 3: make change on 𝑊𝑖 as follow: 

𝑊𝑖(𝑗) = 𝑏  , 𝑊𝑖(𝑘) = 𝑎  

Step 4: Consider 𝑊𝑖 as output of algorithm. 

 

 

6. COMPUTATIONAL RESULTS 
 
This research uses GAMS software, equipped with the 

CPLEX solver, to tackle a Mixed-Integer Linear 

Programming (MILP) model. Each instance of the 

problem is given a maximum of two hours (7200 

seconds) to find the optimal solution. If an optimal 

solution is found within this time limit, it is reported. The 

D-GWO algorithm, along with its components, is 

implemented in Python. All computational experiments 

are carried out on a laptop equipped with an Intel Core 

i7-4600U CPU running at 2.10 GHz. The laptop is 

equipped with 8GB of memory and runs on the Windows 

10 operating system. To fine-tune the parameters of the 

D-GWO algorithm, various values are considered for 

each parameter. Through initial experiments and solving 

numerical problems, the appropriate values are selected. 

Specifically, the PS is set to 10 × 𝑛 , and the MI is set to 

100 (n indicates the number of jobs). 

In the research, the D-GWO algorithm begins by 

randomly generating an initial population of solution 

candidates. Since the algorithm is random in nature, each 

problem is solved 5 times by applying D-GWO. The goal 

function values for the obtained solutions are then 

reported, including the minimum, average, and 

maximum values. To facilitate result comparison, a 

Relative Percentage Deviation (RPD) is employed to 

gauge the goal function value for each solution. The RPD 

is computed using the formula in Equation 38. 

𝑅𝑃𝐷 = (
𝑓(𝑠𝑜𝑙)−𝑓(𝑠𝑜𝑙𝑏𝑒𝑠𝑡)

𝑓(𝑠𝑜𝑙𝑏𝑒𝑠𝑡)
) × 100  (38) 

In this formula, 𝑠𝑜𝑙𝑏𝑒𝑠𝑡  denotes the best solution acquired 

for a specific problem from the solutions obtained. The 

RPD calculates the percentage difference between a 

solution and the best solution, providing a relative 

measure of how far each solution is from the optimal 

value. It helps in comparing the performance of different 

solutions and identifying how close they are to the best 

possible outcome. 

The considered problem can be examined from two 

points of view: If the upper bound of waiting time is zero, 

it implies that the operations of each job must be executed 

consecutively without any breaks. In this case, the 
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problem transforms into a no wait FJSP with additional 

constraints. On the other hand, if the upper bound of 

waiting time is greater than zero, it allows for the 

consideration of waiting time between the operations of 

each job. This introduces flexibility in scheduling and 

provides an opportunity to utilize the gap time between 

operations effectively. Since the objective function 

focuses on achieving a balanced schedule by minimizing 

the total deviation from desired completion times for all 

jobs, it is crucial to make effective use of the waiting time 

between operations. By strategically scheduling the 

operations and utilizing the gap time, it is possible to 

improve the objective function and minimize the 

penalties associated with earliness and tardiness. 

Therefore, in the latter scenario where waiting time is 

allowed, optimizing the schedule to minimize the total 

earliness and tardiness can be achieved by effectively 

managing the gap time between operations. 

Table 3 showcases the results obtained from solving 

various instances. In each instance, some jobs have UBW 

≠ 0 therefor waiting time between their operations can be 

considered, and some of them must be processed as no 

wait (UBW = 0) and their operations must processed in a 

row without any waiting time. According to the 

information provided in Table 3, the RPD values for 

instances where either the mathematical model or 

Benders decomposition method found the optimal 

solution are highlighted in bold. In all instances 

enumerated in Table 3, each job necessitates precisely 

one machine from each stage for processing. For small 

problems with a maximum of 7 jobs, both GAMS and 

Benders decomposition find optimal solutions within a 

reasonable timeframe. Additionally, the D-GWO 

algorithm demonstrates excellent performance by 

consistently providing the optimal solution every 5 times. 

The Benders decomposition method proves to be 

advantageous over Gams software, particularly in 

instances 9 and 10, where Gams software fails to 

guarantee an optimal solution within 7200 seconds. In 

contrast, the Benders decomposition method not only 

offers the optimal solution but also provides a suitable 

lower bound for instances 11 to 15. In large instances, 

both the Benders decomposition method and Gams 

software lose their efficiency, but the D-GWO algorithm 

performs remarkably well by delivering a suitable 

solution within a reasonable time. The solutions obtained 

from the D-GWO algorithm are reliable as it consistently 

provides the optimal solution in small instances, similar 

to exact methods. The algorithm's convergence is 

confirmed by the minimal deviation of its provided 

solutions for each instance. Overall, the results indicate 

that the proposed D-GWO algorithm performs 

effectively and can produce satisfactory solutions within 

a reasonable timeframe, particularly for the larger 

instances of the problem. 

 

 

TABLE 3. Comparison results among the MILP model, Benders method, and D-GWO 

D-GWO Benders GAMS 

No. 

stages 

No. 

job 
Instance Run 

time (s) 

Output (RPD) 
Run time(s) Output (RPD) Run time (s) Output (RPD) 

Max Avg Min 

53 0 0 0 1839 0 2011 0 5 5 1 

59 0 0 0 2388 0 2894 0 7 5 2 

55 0 0 0 2811 0 3362 0 9 5 3 

76 0 0 0 3634 0 4251 0 5 6 4 

67 0 0 0 3893 0 4984 0 7 6 5 

81 0 0 0 4059 0 5375 0 9 6 6 

95 0 0 0 4507 0 6311 0 5 7 7 

107 0 0 0 5113 0 6798 0 7 7 8 

118 0 0 0 5418 0 7200 0 9 7 9 

109 0 0 0 5924 0 7200 0 5 8 10 

143 0 0 0 6469 0 LB 7200 0.03 7 8 11 

151 0.04 0.01 0 6713 0 LB 7200 0.05 9 8 12 

142 0.04 0.02 0 6753 0 LB 7200 0.14 5 9 13 

159 0.05 0.02 0 6854 0.03 LB 7200 0.19 7 9 14 

191 0.08 0.05 0 6831 0.07 LB 7200 0.26 9 9 15 

185 0.15 0.03 0 - - 7200 0.37 5 10 16 
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229 0.10 0.03 0 - - 7200 0.35 7 10 17 

217 0.12 0.08 0 - - 7200 0.38 9 10 18 

384 0.52 0.36 0 - - 7200 1.08 5 15 19 

415 0.63 0.27 0 - - 7200 1.36 7 15 20 

430 0.84 0.39 0 - - 7200 1.98 9 15 21 

576 1.38 0.51 0 - - 7200 3.12 5 20 22 

558 1.65 0.76 0 - - 7200 4.02 7 20 23 

603 1.78 1.11 0 - - 7200 4.31 9 20 24 

753 1.93 1.32 0 - - 7200 - 5 25 25 

798 2.15 1.20 0 - - 7200 - 7 25 26 

774 2.01 1.07 0 - - 7200 - 9 25 27 

879 2.28 1.29 0 - - 7200 - 5 30 28 

961 1.92 1.16 0 - - 7200 - 7 30 29 

994 2.18 1.19 0 - - 7200 - 9 30 30 

345.4 0.66 0.36 0 - - 6299 0.73 Average 

 

 

7. CONCLUSIONS  
 
This paper focuses on the FJSP that incorporates 

machines' maintenance activities and an upper bound for 

interruption between job operations. The objective 

function focuses on achieving a balanced schedule by 

minimizing the total deviation from desired completion 

times for all jobs. This problem has significant 

applications in the production of perishable products. In 

one hand, delays in production can significantly impact 

the freshness and quality of these products, potentially 

leading to spoilage and wasted resources. In other hand, 

early completion can also be detrimental if it leads to 

products reaching their expiration date before they can be 

sold or consumed. Production processes in such 

environments often involve job shop scheduling, where 

production is carried out without delay or with a 

permissible delay (lower than the upper bound delay), 

and the products are promptly packaged and stored. To 

address this issue, the researchers proposed a Mixed-

Integer Linear Programming (MILP) model and 

compared it with the Benders decomposition method. 

The Benders decomposition method demonstrated 

superior quality compared to the model. However, exact 

methods were found to be ineffective in solving large 

instances of the problem. Therefore, the researchers 

developed a D-GWO as an alternative approach. Both the 

D-GWO and the exact methods exhibited good 

performance in solving small instances of the problem.  

Moreover, the D-GWO proved capable of solving 

real-sized instances and demonstrated favorable 

performance in terms of both solution quality and 

runtime.  

In future studies, we could look into letting operations 

be paused and restarted, as long as the break between 

pauses is shorter than the allowed maximum for that 

particular job. Additionally, including immediate repairs 

for unexpected problems would make the situation more 

realistic. 
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Persian Abstract 

 چکیده 
در    ریخ أبرخوردار است و ت  ییبالا  تیاز اهم  آلات ماشین  نانیاطم  تیقابل  شوند،یم  دی تول  کار کارگاهی  ستمیس   کیدر    یمدرن که محصولات فاسد شدن  دیتول  یهاط یدر مح

مقاله    نیمهم است. ا  اریبس  یکار  ات یعمل  ن یب  وقفه  یبرا  ییبالا  یمرزها  نییو تع   آلات ن ی ماش  یو نگهدار  ریتعم  یهاتیدر نظر گرفتن فعال  ن،ی. بنابراستیپردازش کار قابل قبول ن

مسئله    یبرا  دیجد  یاضیمدل ر  کیشود. در مرحله اول،    یپردازد. مطالعه در دو فاز انجام می( مFJSP)  ریپذانعطاف  هیکارگاکار    یبندعوامل به مسئله زمان  نی با در نظر گرفتن ا

 ک یبا  یاندازه واقع با مسائل  یبرا نهیراه حل به کیبه  یابیحال، دست نیشود. با ایم سهیمقا  Benders هیبا روش تجز یمحاسبات ییتوسعه داده شده و از نظر کارا مورد بررسی

  شنهادیپ مسأله نیحل ا ی( براD-GWOگسسته ) یرساز گرگ خاکستنهیبه الگوریتم  کیدر مرحله دوم،  ن،یدشوار است. بنابرا اریآن بس NP-hardساختار  لیبه دل قیروش دق

  Benders  هیکوچک، روش تجز  یهادکه در نمو  دهندنشان میها  یافته.  اندقرار گرفتهاستفاده  مورد    افتهیتوسعه  یهاتمیعملکرد الگور  یابیارز  یبرا  یعدد  یهاشیشده است. آزما

  ن ی ا  ،یبه طور کل  .کندی بهتر عمل م  طیشرا  نی در ا  D-GWO  و الگوریتم  دهندی دست م  ز خود را ا  یی کارا  قیدق  یهاها، روشداندازه نمو   شی، اما با افزاعملکرد بهتری دارد

نشان  را    یمحصولات فاسد شدن  دیتول  یبرا  ریپذانعطاف   هی کارگاکار    یبندزمانسیستم  آلات و وقفه در  نیماش  یو نگهدار  ریتعم  یهاتیدر نظر گرفتن فعال  تیمطالعه اهم

 . دهندی را ارائه م یمناسب یهاحلبزرگ راه  یهادر نمونه D-GWO تمیکوچک و الگور یهادر نمونه Benders هی و روش تجزی شنهادیپ یاضی. مدل ردهدمی
 

 
 

 
 


